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Foreword and Acknowledgements

These notes were developed to complement two summer schools
from 2024: the random matrix theory summer school at the Univer-
sity of Michigan, and the CRM-PIMS probability summer school in
Montreal.

They are intended to random matrix theory and theory for ana-
lyzing the gradient based optimization on random problems. The
random matrix theory was highly influenced by the Dyson equation
method, which provides a systematic way to analyze lots of struc-
tured random matrix problems. The Dyson method for Wigner-like
(or weakly correlated) random matrices has relatively recently been
deployed to great extent in systematizing many difficult estimates;
see [Erd19] for an account. In particular, it is well-tuned to giving
deterministic expressions for statistics of resolvents R(z; AT A) where
A is a random matrix, and many random matrix problems admit
convenient representations in terms of resolvents.

One idiosyncracy (or potentially, one innovation) of these notes is
the Newton flow, for comparing the resolvent R(z; AT A) to the solu-
tion of the Dyson equation. This was done to give a self-contained
way to show how estimates made for the resolvent R(z; AT A) propa-
gate to error estimates between R(z; AT A) and the associated deter-
ministic equivalent. These notes also implement this Newton flow in
the canonical semicircle law case, to show how this method can be
used.

The second component of these notes is the analysis of gradient
based optimization algorithms on random least squares problems
(especially gradient descent and stochastic gradient descent), in par-
ticular showing how the loss curves of the these algorithms can be
represented in terms of various random matrix statistics developed in
the first part.

At the time of writing this, the notes are still works in progress,
and they should be updated over the course of the CRM-PIMS sum-
mer school!

These notes would not be possible without all the wonderful feed-
back from the participants of the Michigan summer school in random
matrix theory. Thanks for all your efforts! I’ve reinforced parts of the
document which should hopefully address some sources of confusion
on my part that you all uncovered.

Thanks also to Yizhe Zhu and Ben Robinson who gave excellent
feedback on various components of these notes. Thanks also to Lucas
Benigni for discussions that helped develop some sections of these
notes. Thanks to Mert Vural for catching typos and providing feed-
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back on the first edition of these notes.
Elliot Paquette

July 1, 2024



Random matrix theory of high-dimensional optimization Lecture Notes | 5

Acknowledgements for the 2023 version of these notes "high
dimensional limits of stochastic gradient descent"

These notes integrate an earlier version of these notes. These notes were
developed for the “Stochastic methods and computation” summer
school, organized by Si Tang at Lehigh University in July 2023. These
notes develop the probabilistic analysis stochastic gradient descent on
idealized high-dimensional objective functions. Moreover, the goal of
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mathematical analysis is performed by approximating problems
in the large-dimensional limit, and in showing that the resulting
problem simplifies.
Some of the work presented here is my own, together with the input
of many extraordinary coauthors. I would especially like to acknowl-
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of this work to have more machine learning implications [Paq+22a]
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3. Elizabeth Collins-Woodfin who developed the analysis for stream-
ing models [CP23a], and Elizabeth and Inbar Seroussi, whose
work on generalized linear models has pushed this past the least
squares context to GLMs (forhcoming at time of writing).
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portional batch size SGD limits.

I’d like to add special thanks to Si Tang and ByeongHo Bahn for
feedback and corrections.
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July 4, 2023
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1 Background

In this section, we collect various probability and linear algebra back-
ground which will be helpful for working with all of the theory here.

1.1 Tensors and calculus

We suppose that Vj for j = 1, 2, 3 are some finite-dimensional Hilbert
spaces. Recall that as a vector space V1 ⊗ V2 is all (finite) linear com-
binations of simple tensors, i.e., those of the form a ⊗ b where a ∈ V1

and b ∈ V2. This becomes an algebra, allowing scalars to commute,
i.e., for c ∈ R

c(a ⊗ b) = (ca)⊗ b = a ⊗ (cb),

and by allowing ⊗ to distribute over addition,

(a + b)⊗ c = (a ⊗ c) + (b ⊗ c) and a ⊗ (b + c) = (a ⊗ b) + (a ⊗ c).
(1)

In what follows, we will need to contract along various tensors.
To facilitate this, we introduce a generalization of the inner product.
Each V1 and V2 carries with it an inner product which we denote by
⟨·, ·⟩V1 and ⟨·, ·⟩V2 respectively. This induces a natural inner produce
on V1 ⊗ V2, which for simple tensors is defined by

⟨a ⊗ b, c ⊗ d⟩V1⊗V2 = ⟨a, c⟩V1⟨b, d⟩V2 . (2)

This is extended to the full space V1 ⊗ V2 by bilinearity.
This, for example, can be connected to the Frobenius inner prod-

uct. If we represent an element A ∈ V1 ⊗ V2 in the orthonormal basis
{ei ⊗ f j} as

A = ∑
i,j

Aijei ⊗ f j, (3)

then we have the identification

⟨A, B⟩V1⊗V2 = ∑
i,j

AijBij = Tr(ABT).

This gives a convenient representation for quadratic forms as well:

⟨A, x ⊗ x⟩Rd⊗Rd = Tr(AxxT) = xT Ax. (4)

Higher tensor powers. For higher tensor powers, the dot products
written above extend naturally to

V1 ⊗ V2 ⊗ V3. (5)

Namely for ai, bi ∈ Vi for i = 1, 2, 3,

⟨a1 ⊗ a2 ⊗ a3, b1 ⊗ b2 ⊗ b3⟩V1⊗V2⊗V3 = ⟨a1, b1⟩⟨a2, b2⟩⟨a3, b3⟩.

This is once more extended by multi-linearity, and we further extend
it to higher tensor powers.
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Partial contractions. For tensors it is also helpful to consider con-
tractions over partial directions. Once more, for simple tensors,
ti = (ai ⊗ bi) ∈ V1 ⊗ V2 for i = 1, 2,

⟨t1, t2⟩V1
:= ⟨a1, a2⟩V1(b1 ⊗ b2) ∈ V⊗2

2 . (6)

This is also extended as a bilinear map (V1 ⊗ V2)
⊗2 → V⊗2

2 . This
extends to higher tensor powers analogously, and also to the more
general situation of products of V1 ⊗ V2 with V1 ⊗ V3 as a bilinear
mapping:

⟨·, ·⟩V1 : (V1 ⊗ V2)⊗ (V1 ⊗ V3) → V2 ⊗ V3 (7)

by the formula for simple tensors in (6). This includes the case where
one of V2 or V3 may be 1-dimensional.

We shall reserve the notation ⟨·, ·⟩ for the complete contraction be-
tween two tensors, in whichever space they reside, and we shall add
the subscript whenever a partial contraction is needed. We note that In context, it may be simpler to use a

numerical subscript (denoting which
axis or axes are constracted) or the
unique label of the space.

having done the partial contraction, it may be helpful to complete the
contraction to a full contraction. This is performed by the trace opera-
tion, which on the Hilbert space V ⊗ V , is defined for simple tensors
by

Tr(v ⊗ w) = ⟨v, w⟩V , (8)

and which extends to all V ⊗ V by linearity. In the context of (6), we
can then write

Tr(⟨t1, t2⟩V1) = ⟨a1, a2⟩V1⟨b1, b2⟩V2 = ⟨t1, t2⟩,

which by linearity therefore identifies Tr(⟨·, ·⟩V1) as the full contrac-
tion.

Norms. Recall that for a matrix A, there are three traditional matrix
norms, beginning with the Frobenius (or Hilbert-Schmidt) norm ∥ · ∥,
operator norm ∥ · ∥σ and trace norm ∥ · ∥∗

∥A∥ =
√

Tr(AT A), ∥A∥σ = sup
x,y ̸=0

(
xt Ay

)
∥x∥∥y∥ , ∥A∥∗ = sup

∥B∥σ=1
Tr(BT A).

These generalize to 2-tensors and higher tensors in an analgous fash-
ion. For 2-tensors A ∈ V1 ⊗ V2, the induced norm on the Hilbert
space generalizes the Hilbert-Schmidt norm, through

∥A∥2 = ⟨A, A⟩V1⊗V2 .

More generally, for higher tensor products, the induced Hilbert space
is the natural generalization. Note that by Cauchy-Schwarz this also
admits a variational representation

∥A∥ = sup
B,∥B∥=1

⟨A, B⟩.
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As for the operator norm, we take the above definition which
defined the operator norm as supremum over simple unit tensors.
We will call these the σ-norm and denote it by ∥ · ∥σ. This norm
is also commonly known as the injective tensor norm. Explicitly, if
φ ∈ V1 ⊗ V2 ⊗ . . . ⊗ Vk, then we define its σ-norm by

∥A∥σ := sup
∥yi∥Vi

=1
i=1,2,...,k

⟨A, y1 ⊗ y2 ⊗ . . . ⊗ yk⟩,

where y1 ⊗ y2 ⊗ . . . ⊗ yk ∈ V1 ⊗ V2 ⊗ . . . ⊗ Vk is a simple tensor. Note
the norm

∥y1 ⊗ y2 ⊗ . . . ⊗ yk∥2 = ⟨y1, y1⟩⟨y2, y2⟩ · · · ⟨yk, yk⟩ = 1,

and hence we have by the variational representation ∥A∥σ ≤ ∥A∥.
Finally for the nuclear norm, we just generalize it as the dual norm

of the injective norm, setting

∥A∥∗ := sup
B,∥B∥σ=1

⟨A, B⟩.

Using the variational representations we observe

∥A∥σ ≤ ∥A∥ ≤ ∥A∥∗. (9)

Calculus for tensors. The functions given above are compositions
of smooth functions f with linear functions, and we would like to
perform many Taylor approximations of these functions. We recall
briefly how differential calculus works here and connect it with the
tensor notation above.

For a (smooth) function f : V1 → V2 on (finite dimensional)
Hilbert spaces V1,V2, its (Fréchet) derivative D f can be identified as
a mapping from V1 → L(V1,V2), the space of linear operators from
V1 → V2 so that for all x, h ∈ V1

lim
t↓0

f (x + th)− f (x)
t

= (D f )(x)[h].

The space L(V1,V2) can be represented as elements of the tensor
product V2 ⊗ V1, by picking an orthonormal basis {ej} for V1 and
then identifying

(D f )(x) ↔ ∑
j
(D f )(x)[ej]⊗ ej,

which is (in effect) its Jacobian matrix representation. This proce-
dure can now be iterated, as D f is a mapping between V1 and a new
vector space L(V1,V2) ∼= V2 ⊗ V1, and hence

D2 f : V1 → L(V1,L(V1,V2)) ∼= V2 ⊗ V1 ⊗ V1.
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In the case that the output of f is 1-dimensional (so that V2 ∼= R)
we may furthermore identify the second derivative (D2 f )(x) with an
element of V1 ⊗ V1. A parallel approach identifies the third derivative
as

D3 f : V1 → L(V1,L(V1,L(V1,V2))) ∼= V2 ⊗ V⊗3
1 .

In this way, we have that

Dk f : V1 → V2 ⊗ V⊗k
1 .

Similarly, when V2 ∼= R, we can identify V2 ⊗ V⊗k
1

∼= V⊗k
1 .

Chain rule with tensors. The class of statistics (and losses) we con-
sider are compositions of smooth maps. In this section, we show how
one can use the tensor notation to simplify the chain rule for higher
order derivatives. Supposing one has two smooth maps f , g with
f : V1 → V2 and g : V2 → V3, the chain rule states that g ◦ f is
a smooth map from V1 → V3 and its derivative is a map from V1 to
L(V1,V3). Moreover it’s derivative is given by

D(g ◦ f )(x)[h] = (Dg)( f (x))[(D f )(x)[h]].

If we represent these as tensors, then (Dg)( f (x)) is in V3 ⊗ V2 and
(D f )(x) is in V2 ⊗ V1, and hence we can as well represent the chain
rule by

D(g ◦ f )(x) = ⟨(Dg)( f (x)), (D f )(x)⟩V2 ∈ V3 ⊗ V1, (10)

showing along which axis the contraction is taken. We note the or-
dering is important here. The input space is always taken to be on
the right.

Applying this in the case of a directional derivative, suppose we
take a smooth function φ : V → R. Then for any fixed x, ∆ ∈ V ,
the map ψ : t 7→ φ(x + t∆) is a smooth function of R, and we may
compute its Taylor approximation. In particular, we are interested
in approximating φ(x + ∆) or equivalently ψ(1). If we approximate
φ(x + ∆) by the third order Taylor expansion at x with remainder, we
have

φ(x + ∆) = ψ(1) = ψ(0) + ψ′(0) + 1
2 ψ′′(0) +

1
2

∫ 1

0
(1 − t)2ψ(3)(t) dt.

Applying the chain rule, if we set x(t) = x + t∆, then (Dx)(t) is
constant and equal to ∆. Therefore, we deduce that

ψ′(0) = ⟨(Dφ)(x), ∆⟩,
ψ′′(0) = ⟨(D2 φ)(x), ∆⊗2⟩,

ψ(3)(t) = ⟨(D3 φ)(x(t)), ∆⊗3⟩.
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To derive this, in particular, the 2nd and 3rd derivatives, we used
linearity to conclude

ψ′′(t) = D(⟨(Dφ)(x(t)), ∆⟩V ) = ⟨D((Dφ)(x(t))), ∆⟩V
= ⟨⟨(D2 φ)(x(t)), ∆⟩V , ∆⟩V
= ⟨(D2 φ)(x(t)), ∆⊗2⟩V⊗V .

We note that in the second line, there is in principle an ambiguity
⟨(D2 φ)(x(t)), ∆⟩V , in that (D2 φ)(x(t)) is an element of V ⊗ V . How-
ever, as the second derivative is symmetric (as φ is smooth and so
mixed partials can be interchanged), contraction along either axis
works. We summarize with the following generic directional deriva-
tive expansion for scalar C3-smooth functions φ : V → R

φ(x + ∆) = φ(x) + ⟨(Dφ)(x), ∆⟩

+
1
2
⟨(D2 φ)(x), ∆⊗2⟩

+
1
2

∫ 1

0
(1 − t)2⟨(D3 φ)(x + t∆), ∆⊗3⟩ dt.

(11)
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1.2 Resolvents

Resolvents are a powerful tool for the manipulation of high-
dimensional matrices and for doing random matrix theory.

Definition 1 (Resolvent): For a matrix A ∈ M(n, n), its resolvent
R(z; A) is the matrix valued function z 7→ (A − z Idn)−1, de-
fined on the subset of the complex plane where C \ Spec(A).
We will usually abbreviate this by writing (A − z)−1.

We use Spec(A) to denote the set of
eigenvalues of A and Idn to denote the
n × n identity matrix.

The resolvent is a well-behaved complex function, in the following
sense:

Definition 2 (Meromorphic): A function f : C → C ∪ {∞} is
meromorphic if it is analytic except at isolated points where
(at λ) it has a pole, i.e., it diverges no faster than |z − λ|−k as
z → λ for some k ∈ N.

Example 1: Rational functions

{p(z)/q(z) ∈ C(z)} for polynomials p and q are meromor-
phic functions.

This extends to matrices by asking that each entry has this prop-
erty:

Definition 3 (Matrix meromorphic functions): A matrix valued
function is meromorphic if every entry is meromorphic.

Theorem 1: Resolvents are meromorphic

Let A ∈ M(n, n). Then R(z; A) is a meromorphic function,
and its poles are precisely Spec(A).

Proof. Let A = SJS−1 be a Jordan decomposition of A, so that J
has a block diagonal representation as J = diag(J1, J2, · · · ), (Ji’s are
Jordan blocks). Now (J − z) is again block diagonal, and observing
(A − z)−1 = S(z − J)−1S−1

R(z; A) = S


R(z; J1) 0 · · ·

0 R(z; J2) · · ·

0 0
. . .

 S−1.

Thus it suffices to evaluate the resolvent of a single Jordan block
and to show it has a pole precisely at the eigenvalue of the block.



Random matrix theory of high-dimensional optimization Lecture Notes | 12

Suppose J is a Jordan block

J =


λ 1 · · · 0
0 λ · · · 0
...

...
. . .

...
0 0 · · · λ

 .

Then by an explicit computation, we can verify

(Jλ − z)−1 =


y y2 · · · yn−1

0 y · · · yn−2

...
...

. . .
...

0 0 · · · y

 , where y = (λ − z)−1.

Corollary 1 (Diagonalizble case): A matrix A ∈ M(n, n) is di-
agonalizable (i.e., comprised of all size 1 Jordan blocks) if and
only if R(z; A) only has simple poles (the largest inverse power
of λ − z that appears is 1). Moreover, if we let

{
λj
}

be the
eigenvalues of A and {(uj, vj)} be corresponding left and right
eigenvectors normalized so that ⟨uj, vj⟩ = 1

R(z; A) =
n

∑
j=1

vjuT
j

λj − z
. (12)

If we furthermore have that A is symmetric, we have the following
elementary estimate:

Corollary 2 (Resolvent-norm): If A ∈ M(n, n) is symmetric, then
it terms of orthonormal eigenvectors uj and eigenvalues λj

R(z; A) =
n

∑
j=1

ujuT
j

λj − z
. (13)

Moreover, we have the operator norm estimate

∥R(z; A)∥σ ≤ 1
d(z, Spec(A))

≤ 1
| Im z| .

Proof. Equation (13) is (12) in the case that A is unitarily diagonal-
izable, and so has vj = uj. In the {uj}-basis (which is an orthonor-
mal change of basis), the resolvent is therefore diagonal, and so its
spectral norm is given by its largest entry in modulus. As all these
eigenvalues are real, this gives the second estimate.
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1.3 Perturbation Formulas

Theorem 2: Perturbation formulas

For A, B ∈ M(n, n) and y, z ∈ C, we have

1. R(z; A)− R(y; A) = (z − y)R(z; A)R(y; A),

2. R(z; A)− R(z; B) = R(z; A)(B − A)R(z; B).

Proof. It suffices to establish the equations at points z where both A
and B are invertible. Then for the first equality, multiply (A − z) and
(A − y) on left and right, respectively, on both sides.

Using the theorem above, if A = B + E for E sufficiently small,

R(z; B + E) = R(z; B)− R(z; B + E)ER(z; B)

= R(z; B)− R(z; B)ER(z; B) + R(z; B)ER(z; B)ER(z; B) + · · · .

This can stop at a finite point, or if the spectral radius of ER(z; B) <

1, we can develop it as a convergent series. Similarly, for z sufficiently
close to y,

R(z; A) = R(y; A) + (z − y)R(y; A)2 + (z − y)2R(y; A)3 + · · · .

As a corollary, we have all derivatives in the resolvent:

Corollary 3 (Resolvent Derivatives): The derivatives of the resol-
vent in the spectral parameter are given by, for any k ∈ N and
at all z ∈ C \ Spec(A)

dkR(z; A)

(dz)k = k!R(z; A)k+1.

The resolvent is also differentiable in the matrix, and we have,
whenever z ∈ C \ Spec(A)

D(R(z; A))[B] := lim
ϵ→0

R(z; A + ϵB)− R(z; A)

ϵ
= −R(z; A)BR(z; A),

which is to say the directional derivative of the resolvent in A
in the B direction is as reported.

In the special case that A and B differ by a low-rank matrix, there
is another formula which can be more fruitful:1 1 While it is a corollary, it is easier to

simply check the identity directly,
multiplying through by (A − z Id) on
both sides and turning the crank.Corollary 4 (Woodbury identity): For U, V ∈ M(n, k) and C ∈
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M(k, k) which is invertible

R(z; A + UCVT) = R(z; A)

− R(z; A)U(C−1 + UT R(z; A)V)−1VT R(z; A),

for all z for which (C−1 + UR(z; A)VT)−1 exists. In particular,
when k = 1 and without loss of generality when C = 1, we
have

R(z; A + UVT)− R(z; A) = −R(z; A)UVT R(z; A)

1 + UT R(z; A)V
.

In the same vein, for working with resolvents, it is frequently
helpful to be able to compute entries or blocks of the resolvent in
terms of other entries. The following is a direct consequence of the
using row-reduction to invert a matrix:2 2 This differs slightly from other ver-

sions, such as Wikipedia, and is advan-
tageous when both A and D have easy
and/or interpretable inverses.Lemma 1 (Schur complement formula): Suppose that the matrix

M is written in blocks as

M =

[
A B
C D

]
.

Then provided all the inverses are well-defined M−1 can be
given by

M−1 =

[
(A − BD−1C)−1 −A−1B(D − CA−1B)−1

−D−1C(A − BD−1C)−1 (D − CA−1B)−1

]
.

Proof. Multiply MM−1 and verify it is Id.

1.4 Spectral mapping

Theorem 3: The Residue Formula

If U ⊂ C is a connected, simply connected open set, f :
U → C is meromorphic, and γ is a smooth chain in U dis-
joint from the poles of f , we have

1
2πι

∮
γ

f (z)dz = ∑
poles λ∈U

Res( f ; λ) Ind(γ; λ), (14)

where

• Res( f ; z) = r−1 if f (z) = ∑k∈Z rk(z − λ)k is a series
converging in a sufficiently small neighborhood of λ, and
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• Ind(γ; λ) is the number of times γ winds counterclockwise
around λ.

A chain is a sum of curves. Integration
with respect to a chain is the sum of
integrals over all the cuves in the chain.

When integrating a matrix-valued func-
tion, it can be defined entry-by-entry.
From the linearity of the mapping of
matrix-to-entry, this must commute
with integration in a parameter.

Definition 4 (Holomorphic Functional Calculus): If f : U → C is
analytic and U ⊇ Spec(A), then for smooth simple γ enclosing
Spec(A) with index 1,

f (A) :=
−1
2πi

∮
γ

f (z)R(z; A)dz. (15)

The main point of this definition is that it recovers composition.

Theorem 4: Holomorphic functional calculus

If U ⊇ Spec(A) and given analytic functions f : U → C and
g : U → U, we have f (g(A)) = ( f ◦ g)(A).

Example 2: Exponentials

If f is entire and f (z) = ∑∞
k=0 akzk, then we could also define

f (A) = ∑∞
k=0 ak Ak. This coincides with (14). Now we also

have

exp(A) =
∞

∑
k=0

Ak

k!
=

−1
2πi

∮
γ

ezR(z; A)dz.

Conversely, if Re Spec(A) > 0, log A = −1
2πi
∮

γ log(z)R(z; A)dz
where we take log z the principal branch. Moreover,
log(exp(A)) = A.

Finally we note that for symmetric A, we can give a simple spec-
tral representation.

Definition 5 (Symmetric spectral mapping): If A ∈ M(n, n) is sym-
metric and f is a real-valued function defined in a neighbor-
hood of Spec(A) then in terms of orthonormal eigenvectors uj

and eigenvalues λj

f (A) :=
n

∑
j=1

f (λj)ujuT
j . (16)

This agrees with the holmorphic functional calculus when f is
analytic in a neighborhood Spec(A) using Corollary 2.
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1.5 Stieltjes transforms

The Stieltjes transform is an essential tool for working with random
matrices, where it largely plays the role of the Fourier transform of
traditional random matrix theory.

Definition 6 (Stieltjes): For a finite measure µ on R, the Stieltjes
transform of µ is the function

sµ(z) :=
∫

R

µ(dx)
x − z

,

which maps the upper-half plane H to itself.

The Stieltjes transform encodes properties of the measure analyt-
ically. In particular, the mapping of µ → sµ is injective, and so to
know the Stieltjes transform is to know the measure. Recovering the
measure µ from sµ can be done by Stieltjes inversion.

Theorem 5: Stieltjes Inversion

For a Stieltjes transform sµ, the measure µ can be recoverd by
taking the limit

1
π

Im sµ(x + i
t )dx law−−→

t→∞
µ(dx).

Proof. By explicit computation, we have the imaginary party of sµ is
given by

sµ(x + i
t ) =

∫
R

tµ(dy)
((y − x)t)2 + 1

,

which is the density of the convolution of µ with a X 1
t for a Cauchy

random variable X. This law converges to µ on taking t → ∞.

This leads to an equivalent formulation of weak convergence of
probability measures (and weak-in-probability convergence of ran-
dom measures)3: 3 A sequence of random finite measures

µn on R converges weakly in proba-
bility if there is a (possibly random)
measure µ∞ so that for any bounded

continuous ϕ
∫

ϕµn
Pr−−−→

n→∞

∫
ϕµ.

Lemma 2 (Stieltjes characterization of weak convergence): A se-
quence of (Borel) probability measures {µn} converges weak-*
to µ∞ if and only if for all z ∈ H, sµn(z) → sµ∞(z).

We also can use functions that look like Stieltjes transforms to
construct measures. A key piece of complex analysis is the Herglotz
representation theorem:
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Theorem 6: Herglotz

Suppose that F is an analytic function from H → H. Then
there exists real numbers a, b with a ≥ 0 and a measure µ on
R so that

∫ µ(dx)
1+x2 < ∞ so that for all z ∈ H

F(z) = az + b +
∫

R

{
1

x − z
− x

1 + x2

}
µ(dx).

See [DK05, Theorem 1.4.2] for a proof.
In particular, for the purpose of identifying Stieltjes transforms

of finite measures, it suffices to further know the behavior of F for z
having large imaginary part.

Corollary 5 (Characterization of Stieltjes transforms): Suppose that
F is an analytic function from H → H, and suppose further
that

F(it)t −−→
t→∞

ic where c ∈ [0, ∞).

Then there exists µ on R with µ(R) = c so that

F(z) =
∫

R

1
x − z

µ(dx).

Proof. As F : H → H is analytic, we may apply Theorem 6. Taking
the imaginary part of F(it)t, we have

Im F(it)t = at2 +
∫

R

t2

x2 + t2 µ(dx).

As this converges to c we must have, from dominated oncvergence
that a = 0 and µ(R) = c. We therefore have

F(z) = b +
∫

R

{
1

x − z
− x

1 + x2

}
µ(dx),

and since µ is finite, we may expand the terms of the integral, to
conclude for some other real constant b′

F(z) = b′ +
∫

R

1
x − z

µ(dx).

Taking the real part

Re F(it) = b′ +
∫

R

x
x2 + t2 µ(dx),

and hence as Re F(it) → 0, we have b′ = 0 as well, which concludes
the proof.
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1.6 Martingales and concentration

(Discrete time) Martingales are processes satisfying the two following
properties:

Definition 7 (Martingale): A Martingale (Mn : n ≥ 0) adapated
to a filtration (Fn : n ≥ 0) is a real-valued stochastic process
satisfying:

1. E|Mn| < ∞ for all n ≥ 0.

2. E(Mn+1 | Fn) = Mn.

On replacing the second equality by ≥ we get a submartingale
and likewise ≤ leads to a supermartingale.

Martingales are essential tools for the analysis of stochastic pro-
cesses. They generally allow the analysis of many different processes.

A typical application of martingales is the following:

Lemma 3 (Doob Maximal inequality): For any non-negative sub-
martingale (Mn : n ≥ 0) and any a > 0 and all n ≥ 1

Pr( max
0≤k≤n

Mk ≥ a) ≤ EMn

a
.

Submartingales can be manufactured from martingales by apply-
ing a convex function:

Exercise 1 (convex): Suppose that ϕ : R → R is convex and that
(Mn : n ≥ 0) is a martingale. Show that if (ϕ(Mn) : n ≥ 0)
has finite expectation, then it is a submartingale. If further ϕ

is nondecreasing, then the same holds if (Mn : n ≥ 0) is a
submartingale

Martingales moreover can be manufactured from other process by
taking their Doob decomposition.

Definition 8 (Predictable): A stochastic process (Xn : n ≥ 0) is
predictable if X0 is deterministic and Xn is Fn−1–measurable for
all n ∈ N.

(Note)4 4 This implies adaptedness, but more-
over, it means that at the n-th step, you
could have determined the process
available in the (n − 1)-st.

Using this, any adapted process can be decomposed into a martin-
gale and predictable part.
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Theorem 7: Doob decomposition

Any real-valued process (Xn : n ≥ 0) having E|Xn| < ∞ for
all n and adapted to a filtration (Fn : n ≥ 0) can be uniquely
decomposed as Xn = Mn + An where M0 = 0, (Mn : n ≥ 0) is
a martingale and (An : n ≥ 0) is predictable. Moreover

An = EX0 +
n

∑
j=1

E(Xj − Xj−1 | Fj−1).

The process (An : n ≥ 0) is called the compensator of (Xn : n ≥
0).

The bracket process is an important is an important special case. 5 5 This is going to intuitively represent
the accumulated ammount of “ran-
domess” of a martingale. This measure
can be skeweed to be larger than in
some sense it should be if the second
moments of increments of the martin-
gale barely exist (or do not exist at all!)
in which case this is not really useful.
So it is almost always appears paired
with the condition that |Mj − Mj−1| ≤ 1
almost surely, which is more helpful.

Define

Definition 9 (Bracket process): For a martingale (Mn : n ≥ 0), the
bracket process [Mn] is the compensator of M2

n, i.e.

[Mn] = EM2
0 +

n

∑
j=1

E(M2
j − M2

j−1 | Fj−1)

= EM2
0 +

n

∑
j=1

E((Mj − Mj−1)
2 | Fj−1).

One of the simplest criteria for convergence of a stochastic process
can be given in terms of this bracket process.

Theorem 8: Bracket process & convergence

Suppose that (Mn : n ≥ 0) is a martingale. By monotonicity,
[M]∞ := limn→∞[M]n exists almost surely (but may be infi-
nite). On the event [M]∞ < ∞, Mn

a.s.−−−→
n→∞

M∞, which exists
and is finite almost surely.

1.7 Subgaussian Martingale concentration

When the increments of a martingale are sufficiently bounded, it is
possible to make much stronger estimates of the maximum value of a
martingale, and this leads to some of the most important applications
of martingales: tail bounds for random variables.

Definition 10 (Subgaussian): A centered random variable X is V-
subgaussian if

EeλX ≤ eλ2V/2 for all λ ∈ R.
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If the random variable is not centered,
there are competing definitions of
what V-subgaussian should mean. The
clearest alternative definition would be
an estimate of its ψ2–norm defined in
Definition 11.

This also leads to a definition of a norm which is convenient for
quick tail bounds.

Definition 11 (Orlicz-norms): For any p ≥ 1 and any real-valued
random variable X, define the ψp–Orlicz norm

∥X∥ψp = inf{t ≥ 0 : E exp(|X|p/tp) ≤ 2}.

This connects to the previous definition through the following
estimate:

Lemma 4 (Orlicz characterization of Subgaussian): There are abso-
lute constants C1 and C2 so that:

1. If a centered random variable X is V-subgaussian, then

∥X∥ψ2 ≤ C1
√

V.

2. Conversely, if X is centered and ∥X∥ψ2 < ∞ then X is
C2∥X∥2

ψ2
subgaussian.

Besides the subgaussian case, this has another extremely important
special case:

Definition 12 (Subexponential): A random variable X is V-
subexponential if

∥X∥ψ1 ≤ V.

See [Ver18, Chapter 2] for an elaboration on various equivalent for-
mulations of subgaussian and subexponential processes.

For a martingale, we can define an upgraded bracket process,
replaces a sum of conditional variances by the sum of conditional
subgaussian increments.

Definition 13 (Subgaussian Bracket): A martingale (Mn : n ≥ 0)
is (Vn)–conditionally subgaussian for an adapted process (Vn :
n ≥ 1) if for all n ≥ 1 and all λ ∈ R

E[eλ(Mn−Mn−1) | Fn−1] ≤ eλ2Vn/2 a. s.

Define the subgaussian bracket JMnK as the smallest, non-
negative, non-decreasing adapted process so that (Mn : n ≥ 0)
is conditionally subgaussian with process (JMnK− JMn−1K : n ≥
1).
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Say that a martingale (Mn)N
n=1 is subgaussian if JMNK < ∞ a. s.

This leads immediately to a tail bound for a martingale which
enjoys this conditional subgaussian property.

Theorem 9: Subgaussian Azuma

Suppose that (Mn : n ≥ 0) that is a subgaussian with martin-
gale. Then for any n, t, S ≥ 0,

Pr({ sup
0≤k≤n

(Mk − M0) ≥ t} ∩ {JMnK ≤ S}) ≤ exp
(
− t2

2S

)
.

Proof. By subtracting M0 from the martingale, we may assume M0 is
0. Define a new process, for any λ ∈ R,

En := exp
(
λMn − λ2JMnK/2

)
.

Then by the conditional subgaussian assumption (En : n ≥ 0)
is a supermartingale. Let T be the first time k that Mk ≥ t or that
JMkK > S. Then by optional stopping, for λ ≥ 0

1 ≥ E(ET∧n).

On the event {T ≤ n} ∩ {JMnK ≤ S}, we have

ET∧n ≥ exp
(
λt − λ2JMTK/2

)
≥ exp

(
λt − λ2S/2

)
.

Thus
1 ≥ Pr({T ≤ n} ∩ {JMnK ≤ S}) exp

(
λt − λ2S/2

)
.

Rearranging we have shown that for any λ ≥ 0,

Pr({ sup
0≤k≤n

Mk ≥ t} ∩ {JMnK ≤ S}) ≤ exp
(
−λt + λ2S/2

)
.

Optimzing over λ ≥ 0, we select λ = t/S which shows the bound.

A simple special case is for increments that are bounded.

Lemma 5 (Bounded implies subgaussian): Suppose that X is
mean 0 and X ∈ (a, b) for a, b ∈ R. Then

E exp(λX) ≤ exp((b − a)2λ2/8).

Or simply, X is (b − a)2/4–subgaussian.
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Proof. Suppose without loss of generality that b ≤ a. We can repre-
sent X as a convex combination, by

X = b
X − a
b − a

+ a
b − X
b − a

.

Then by convexity for all λ ∈ R

E exp(λX) ≤ E

(
exp(λb)

X − a
b − a

+ exp(λa)
b − X
b − a

)
.

Using that X has mean 0,

E exp(λX) ≤ exp(λb)
−a

b − a
+ exp(λa)

b
b − a

=: f (λ).

Taking the log-derivative

d
dλ

log f (λ) =
−ab exp(λb) + ab exp(λa)
−a exp(λb) + b exp(λa)

.

With courage, we take another derivative, and then bound it above by
(b − a)2/4, uniformly in λ ∈ R. Then, integrating twice,

log f (λ) ≤ λ2

2
(b − a)2

4
.

As a corollary, we derive the classical Azuma inequalities.

Corollary 6 (Azuma): Suppose that (Mn : n ≥ 0) is a martingale
and (An : n ≥ 1) is a predictable process such that for all 1 ≤
k ≤ n, |Mk − Mk−1| ≤ Ak, then for all t ≥ 0

Pr
(
{ max

0≤k≤n
(Mk − M0) ≥ t} ∩ {

n

∑
1

Ak ≤ A}
)
≤ exp

(
− t2

2A

)
.

If Ak are in fact deterministic, then we derive the convential
Azuma inequality

Pr
(

max
0≤k≤n

(Mk − M0) ≥ t
)
≤ exp

(
− t2

2 ∑n
k=1 A2

k

)
.



Random matrix theory of high-dimensional optimization Lecture Notes | 23

1.8 Subexponential Martingale concentration

Martingales whose increments are only subexponential still retain
a strong tail bound which is not quite Gaussian, but is generally
Gaussian on a large enough range to recover most of what one needs
from such a tail bound. The following is an adaptation of Bernstein’s
inequality to the martingale case (c.f. [Ver18, Theorem 2.8.1], where
the nonmartingale bound is proven. The adaptation to the martingale
case is a small extension):

Lemma 6 (Martingale Bernstein inequality): If (Mn)N
1 is a martin-

gale on the filtered probability space (Ω, (Fn)N
1 , Pr)) and we

define

σn :=
∥∥∥inf{t ≥ 0 : E

(
e|Mn−Mn−1|/t|Fn−1

)
≤ 2}

∥∥∥
L∞(Pr)

, (17)

then there is an absolute constant C > 0 so that, for all t > 0,

Pr

(
sup

1≤n≤N
|Mn − M0| ≥ t

)
≤ 2 exp

(
−min

{
t

C∥σ∥∞
,

t2

C∥σ∥2
2

})
,

(18)
where the norms ∥σ∥p are the ℓp vector norms of (σn : 1 ≤ n ≤
N).

Another, related inequality is Freedman’s inequality, which trades
stronger a priori control on the increments for simple control on the
bracket.

Lemma 7 (Freedman inequality): Suppose (Mn)N
1 is a martingale

on the filtered probability space (Ω, (Fn)N
1 , Pr)) and suppose

its increments are all bounded by 1 almost surely Then there is
an absolute constant C > 0 so that, for all S, t > 0,

Pr

({
sup

1≤n≤N
|Mn − M0| ≥ t

}
∩ {[MN ] ≤ S}

)

≤ 2 exp
(
−min

{
t
C

,
t2

CS

})
.

(19)
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1.9 Moment concentration of multilinear forms of independent
random variables

While Orlicz-type bounds are efficient at bounding probabilities with
exponential rates, we often do not need such precision, and simpler
polynomial rates of high order will suffice. (As we often have to take
union bounds over families of events which are a polynomial in the
system size).

These are most easily formulated in terms of the simpler Hölder
norms. So for a p ≥ 1 we use the simpler:

Definition 14 (Hölder-norms): For any p ≥ 1 and any real-valued
random variable X, define

∥X∥p = (E(|X|p))1/p .

The subgaussian and subexponential random variables can be
characterized in terms of their moments. In particular, we can define
norms equivalent to the Orlicz-norms in terms of the usual Hölder
norms:

Definition 15 (Moment-norms): For any p ≥ 1 and any real-
valued random variable X, define the mp norm

∥X∥mp = inf{q ≥ 1 : q−1/p × ∥X∥q},

and a dyadic counterpart

∥X∥mdp = inf{k ∈ N : 2−k/p × ∥X∥2k}.

These are equivalent to the Orlicz norms up to constants that
depend only on p:

Theorem 10: Moment-Characterization

For any p ≥ 1 there are positive constants ap, bp, cp so that for
all real-valued random variables X,

ap∥X∥ψp ≤ bp∥X∥mdp ≤ ∥X∥mp ≤ ∥X∥mdp ≤ cp∥X∥ψp .

The first multilinear form to bound is the sum of independent
real-valued random variables. A key idea in this direction is sym-
metrization. In particular, suppose that {Xj}n

1 are independent real-
valued random variables. Enlarge the probability space to include an
independent copy {Yj}n

1 of these random vectors and independent
collection {ϵj}n

1 of iid Rademacher random variables6. The distribu- 6 Unif{1,−1}
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tions of Xj − Yj are all symmetric and independent, and so

(Xj − Yj : 1 ≤ j ≤ n) law
= (ϵj(Xj − Yj) : 1 ≤ j ≤ n).

Then by Jensen’s inequality for q ≥ 1∥∥∥∑j(Xj − EXj)
∥∥∥q

q
= E

∣∣∣∑j(Xj − EYj)
∣∣∣q

≤ E

∣∣∣∑j(Xj − Yj)
∣∣∣q

=
∥∥∥∑j(ϵj(Xj − Yj))

∥∥∥q

q

≤ 2q
∥∥∥∑j(Xj − EXj)

∥∥∥q

q
.

In the last step, we have applied the triangle inequality for the q-
norms and again used the symmetries in law.

Now the signs ϵj are iid subgaussian, and so we may apply sub-
gaussian concentration conditionally on (X − Y). Writing ∥ · |F∥(·) for
the norms, conditioned on (X − Y),∥∥∥∑j(ϵj(Xj − Yj))|F

∥∥∥
q
≤ q1/2

∥∥∥∑j(ϵj(Xj − Yj))|F
∥∥∥

m2

≤ c2q1/2
(

∑j((Xj − Yj)
2)
)1/2

≤ c2(2q)1/2
(

∑j((Xj − EXj)
2)
)1/2

for c2 an absolute constant relating to subgaussian norms. Taking the
expected q-th power on both sides∥∥∥∑j(Xj − EXj)

∥∥∥q

q
≤ cq

2(2q)q/2
∥∥∥∑j(Xj − EXj)

2
∥∥∥q/2

q/2
. (20)

Thus we have halved the order of the Hölder norm at the cost of
squaring the summands. In principle, this could be developed further
(for example recursively applying this identity), but it will be enough
to get a bound on sums. 7 7 If

Lemma 8 (Linear form): Suppose {Xj}n
1 are independent and

suppose that a = {aj}n
1 are complex constants. Then there is

an absolute constant c so that for all q ≥ 2∥∥∥∑j aj(Xj − EXj)
∥∥∥

q
≤ c

√
q∥a∥2 max

j
∥Xj − EXj∥q.

Proof. By taking real and imaginary parts, it suffices to prove the
claim for real scalars. For real scalars, by (20)∥∥∥∑j aj(Xj − EXj)

∥∥∥2

q
≤ c2

2(2q)
∥∥∥∑ja2

j (Xj − EXj)
2
∥∥∥

q/2
. (21)
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Applying the triangle inequality to the right hand side,∥∥∥∑j aj(Xj − EXj)
∥∥∥2

q
≤ c2

2(2q)∑
j

a2
j

∥∥∥(Xj − EXj)
2
∥∥∥

q/2
,

and the claimed bound follows quickly.

This strategy generalizes to higher forms as well, with one crucial
observation.8 The random signs {ϵj} can also be selected indepen- 8 This idea is from [Whi60].

dent of the σ-algebra of invariant functions

F := σ
(

F(X, Y) : F : Rd × Rd → R, F(A, B) = F(B, A)
)

,

as the signs correpond to swapping entries of X and Y. Hence for a
symmetric matrix A

⟨X ⊗ X, A⟩ − ⟨Y ⊗ Y, A⟩ = ⟨(X − Y)⊗ (X + Y), A⟩
law
= ∑

j
ϵj(Xj − Yj)(A(X + Y))j.

Thus, conditioning on F

∥⟨X ⊗ X − Y ⊗ Y, A⟩|F∥q ≤ c2q1/2

(
∑

j
(Xj − Yj)

2 ((A(X + Y))j
)2
)1/2

.

For q ≥ 2, we can take the q-th power on both sides and bound

E (⟨X ⊗ X − Y ⊗ Y, A⟩)q ≤ (2c2
2q)q/2 ∑

j
E|Xj − Yj|q

∣∣(A(X + Y))j
∣∣q

≤ (8c2
2q)q/2 ∑

i,j
|Ai,j|qE|Xj − Yj|q|Xi + Yi|q

≤ 4(16 · 8c2
2q)q/2

(
∑
i,j

|Ai,j|q
)

max
j

E|Xj|2q.

Note that the sum of q-th powers of A we can bound by

∑
i,j

|Ai,j|q ≤
(

∑
i,j

|Ai,j|2
)
∥A∥q−2

op ≤ ∥A∥q
HS,

from which we conclude:

Lemma 9 (Quadratic form): Suppose {Xj}n
1 are independent, cen-

tered and have variance 1. Suppose that A is a complex matrix.
Then there is an absolute constant C so that for all q ≥ 2

∥⟨X ⊗ X, A⟩ − Tr(A)∥q ≤ C
√

q∥A∥HS max
j

∥Xj∥2q.
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Proof. For general complex A, the quadratic form ⟨X ⊗ X, A⟩ can be
written as a sum of quadratic forms in real symmetric matrices, each
of which has Hilbert-Schmidt norm bounded (up to absolute con-
stants) by the Hilbert-Schmidt norm of A. This can now be bounded
by the method preceding the lemma.

This generalizes to any order quadratic form the same way:

Lemma 10 (General form): Suppose {Xj}n
1 are independent, cen-

tered and have variance 1. Suppose that A is a complex k-
tensor for k ≥ 3. Then there is an absolute constant Ck so that
for all q ≥ 2∥∥∥⟨X⊗k, A⟩ − E⟨X⊗k, A⟩

∥∥∥
q
≤ Ck

√
q∥A∥max

j
∥Xj∥kq.

Here ∥ · ∥ is the induced Hilbert-space norm, which is the sum
of absolute squares of all entries of A.
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1.10 Gaussian interpolation and concentration

Gaussian measure satisfies a wide-ranging, far stronger form of con-
centration, often just going by the name Gaussian concentration. This
makes many (otherwise tricky) concentration of measure estimates
practically trivial. The starting point for this is Gaussian integration
by parts.

Lemma 11 (Stein’s Lemma): If Z law
= N(0, Σ), then provided f :

Rd → R is absolutely continuous and E∥∇ f (Z)∥ < ∞

EZ f (Z) = ΣE∇ f (Z).

Proof. We may assume by approximation that f is compactly sup-

ported and C1. In the one-dimensional case, with Z law
= N(0, 1)

EZ f (Z) = E f ′(Z).

This follows directly from integration-by-parts applied to the Gaus-
sian density. Hence if we repeat this coordinate-by-coordinate, then

we conclude that for f : Rd → R and for Z law
= N(0, Id)

EZ f (Z) = E∇ f (Z).

So, for the claim, we now represent Z =
√

ΣY as an iid Gassian
vector Y. We may also represent f (Z) = ( f ◦

√
Σ)(Y) =: g(Y), which

remains compactly supported and C1. Then

EZ f (Z) =
√

ΣEYg(Y) =
√

ΣE∇g(Y) = ΣE∇ f (Z).

The next key idea is Gaussian interpolation.

Definition 16 (Gaussian interpolation): For a general, mean-0 ran-
dom vector X with finite second moments and covariance ma-
trix Σ, we can define a flow from X to an independent Gaus-
sian vector Y with matching covariance, given by

Yα = αX +
√
(1 − α2)Y where α ∈ [0, 1].

This flow can be used in multiple ways: first, if we differentiate ex-
pectations along this flow and control the change, we can show that
some expectations are close to the same as those of matching Gaus-
sian moments, which is an instance of universality. We can also use it
with two independent Gaussians X and Y of matching covariance, in
which case we can use it to show concentration.9 9 If we can flow from f (Y0) to f (Y1)

without changing very much, then
f (Y0) must be close to deterministic.
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Lemma 12 (Dynamical covariance representation): Suppose X, Y
are iid N(0, Σ) and f , g are absolutely continuous and satisfy

E
(

f (X)2 + ∥Σ∇ f (X)∥2 + g(X)2 + ∥Σ∇g(X)∥2
)
< ∞.

Then

Cov( f (X), g(X)) =
∫ 1

0
E⟨Σ∇ f (X),∇g(Yα)⟩dα.

Proof. By approximation, we can assume that f and g are C2 and
have compact support. Then by independence of Y1 from Y0

Cov( f (X), g(X)) =
∫ 1

0
E f (X)

d
dα

g(Yα)dα

=
∫ 1

0
E f (X)⟨∇g(Yα), X − α√

1−α2 Y⟩dα.

=
∫ 1

0
E Tr

(
f (X)∇g(Yα)⊗ (X − α√

1−α2 Y)
)

dα.

Now we apply Gaussian integration by parts once more. We note
that taking the X gradient and Y gradients of ∇g(Yα) produce

∇X∇g(Yα) = α∇2g(Yα) and ∇Y∇g(Yα) =
√

1 − α2∇2g(Yα),

with ∇2g the Hessian matrix of g. On the other hand the Y gradient
of f is 0, and so we have

Cov( f (X), g(X)) =
∫ 1

0
E Tr

(
Σ∇ f (X)⊗∇g(Yα) + α f (X)Σ∇2g(Yα)

−
√

1 − α2 α√
1−α2 α f (X)Σ∇2g(Yα)

)
dα

=
∫ 1

0
E Tr (Σ∇ f (X)⊗∇g(Yα))dα

=
∫ 1

0
E⟨Σ∇ f (X),∇g(Yα)⟩dα.

A direct consequence of this representation is Gaussian concentra-
tion.10 10 This is adapted from [AT07, Chapter

2] who further ascribes it to [CY12].
Theorem 11: Gaussian concentration

Suppose that f : Rd → R is locally Lipschitz and X law
=

N(0, Σ). Suppose further that for some deterministic finite
L

⟨Σ∇ f (X),∇ f (X)⟩ ≤ L2
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almost surely. Then E| f (X)| is finite and for all t ≥ 0

Pr( f (X)− E f (X) ≥ t) ≤ exp
(
−t2/(2L2)

)
.

Proof. The integrability of EeC| f (X)| for any C can be checked by
expressing X = µ +

√
ΣZ for iid normal Z and mean µ and bounding

on shells of ∥Z∥. Furthermore, by shifting f , we may without loss of
generality assume E f (X) = 0.

Now we apply Lemma 12 with g = eλ f for fixed λ (or in fact we
will reverse the roles of f and g), and we conclude for any λ ≥ 0

E f (X)eλ f (X) =
∫ 1

0
E
(
⟨Σ∇ f (X), λ∇ f (Yα)⟩eλ f (X)

)
dα.

Then giving an almost sure bound on the inner product,

E f (X)eλ f (X) ≤ λL2Eeλ f (X).

Hence with M(λ) = Eeλ f (X),

d
dλ

M(λ) ≤ λL2M(λ).

Thus from Gronwall’s inequality, for all λ ≥ 0

M(λ) ≤ M(0)eλ2L2/2 = eλ2L2/2.

The tail bound now follows the same way as the usual Gaussian tail
bounds (c.f. Theorem 9).
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1.11 Itô calculus

We will use simple multivariable Itô calculus for continous semi-
martingales. An introduction to this type of theory can be found, for
example in [Oks13] or in [KS91]. We will not attempt to develop this
theory entirely here, but in this text we will use the simplest theory
of (strong) solutions of stochastic differential equations. Furthermore,
we shall show how this interacts with the tensor formalism intro-
duced earlier.

Recall that:

Definition 17 (Brownian motion): A Brownian motion (Bt : t ≥
0) is a continuous function (almost surely) with the poperty
that B0 = 0 and for any finite collection 0 = t0 < t1 < t2 <

· · · < tk the collection (Btj − Btj−1 : 1 ≤ j ≤ k) are indepedent,
mean 0, Gaussian and have variances (|tj − tj−1| : 1 ≤ j ≤
k). A standard d-dimensional Brownian motion is a vector of
independent Brownian motions.

We suppose that (Ω, (Ft : t ≥ 0), Pr) is a filtered probability space
with a d-dimensional Brownian motion (Bt : t ≥ 0) so that Bt is Ft

measurable for all t ≥ 0 (i.e. it is adapted). The filtration we take to be right-
continuous.In continuous time, we again define continuous martingales:

Definition 18 (Continuous Martingale): A continuous martingale
(Mt : t ≥ 0) adapated to filtration (Ft : t ≥ 0) is a real-valued
stochastic process satisfying:

1. E|Mt| < ∞ for all t ≥ 0.

2. E(Mt | Fs) = Ms for all t > s ≥ 0

Replacing the second equality by ≥ we get a submartingale
and likewise ≤ leads to a supermartingale.

Continuous martingales and stochastic processes are slightly in-
complete in that it is helpful to enlarge this class slightly. So we de-
fine:

Definition 19 (Local martingale): A local martingale (Xt : t ≥ 0) is
a continuous adapted process to (Ft : t ≥ 0) with the property
that there is a sequence of stopping times Tk with Tk

a.s.−−−→
k→∞

∞

and so that the stopped process XTk
t := Xt∧Tk are martingales.
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Definition 20 (Itô integral): For an adapted continuous process
V in the space of matrices M(p, d) having ∥V∥σ bounded by 1
almost surely, the Itô integral can be given by the in-probability
limit ∫ t

0
Vs dBs = Pr · lim

k→∞

k

∑
j=1

Vtj−1(Btj − Btj−1),

where the maximal spacing in the mesh 0 = t0 < t1 < t2 <

· · · < tk = t tends to 0 with k.

This can be seen to be independent of the choice of mesh and be
subsequently extended to unbounded integrands V by approxima-
tion by bounded ones.

Definition 21 (Itô process): An Itô process (Xt : t ≥ 0) in Ro is
one for which we can represent

Xt = X0 +
∫ t

0
us ds +

∫ t

0
Vs dBs,

with the latter integral given by the Itô integral and where u
and V are continuous adapted processes satisfying that almost
surely, for each t ≥ 0,∫ t

0

(
∥us∥+ ∥Vs∥

)
ds < ∞.

This is often represented in differential form by

dXt = ut dt + Vt dBt.

An Itô process is finite variation if and only if Vt ≡ 0.

A key result connects Itô processes and martingales

Theorem 12: Martingale representation

An Itô process is local martingale if and only if ut ≡ 0. If fur-
thermore E|Xt| < ∞ for all t > 0 then it is a martingale.
Conversely, if a martingale (Mt) adapted to (Ft) satisfies
E|Mt|2 < ∞ for any t, then it is an Itô process.

For Itô processes, we have Itô’s formula.
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Theorem 13: Itô’s formula

Suppose g : R × Rd → R is C2 and suppose that (Xt : t ≥ 0)
is an Itô process. Then g(t, Xt) is again an Itô process and
moreover

dg(t, Xt) = (∂tg(t, Xt) + ⟨∇xg(t, Xt), ut⟩+ 1
2 ⟨∇

2
xg(t, Xt), Vt⟩)dt

+ ⟨∇xg(t, Xt), Vt dBt⟩.

For a continuous-time local martingale, (Mt : t ≥ 0), in R, we
define its bracket process by:

Definition 22 (Bracket process): The bracket process [M]t is the
unique finite variation process with [M]0 = 0 so that M2

t − [M]t
is a local martingale. If dMt = Vt dBt then

d[M]t = ∥Vt∥2 dt.

The bracket process gives a quick way to produce tail bounds for
local martingales.

Exercise 2 (Exponential martingale): Use Itô’s formula (applied
to Xt = (Mt, [M]t)) to show that exp(Mt − 1

2 [M]t) is a local
martingale.

Lemma 13 (Concentration for Brownian martingales): Suppose that
(Mt : t ≥ 0) is a local martingale. For any T, S, x > 0

Pr({ max
0≤t≤T

(Mt − M0) ≥ x} ∩ {[M]T ≤ S}) ≤ exp
(
− x2

2S

)
.

Note that this is precisely the analogue
of the Discrete Freedman’s inequality
Lemma 7.

Proof. By subtracting M0 from M we may assume M0 = 0. Using
that Yt := exp(λMt − λ2

2 [M]t) is a local martingale, there are stop-
ping times Tk so that YTk

t are martingales. Let ϑ = min{t : [M]t ≥
S or |Mt| > x}. As YTk∧ϑ is a continuous martingale,

E[YTk∧ϑ
T ] = E[YTk∧ϑ

0 ] = 1.

By Fatou’s Lemma, we may take k → ∞ and conclude

E[Yϑ
T ] ≤ lim inf

k→∞
E[YTk∧ϑ

T ] = 1.

On the event {[M]T ≤ S} ∩ {max0≤t≤T Mt ≥ x} we have for λ ≥ 0

Yϑ
T ≥ exp(λx − λ2

2 S).



Random matrix theory of high-dimensional optimization Lecture Notes | 34

Hence

Pr({[M]T ≤ S} ∩ { max
0≤t≤T

Mt ≥ x}) ≤ exp(−λx + λ2

2 S).

Setting λ = x/S gives

Pr({[M]T ≤ S} ∩ { max
0≤t≤T

Mt ≥ x}) ≤ e−λ2/(2S).
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2 Dyson equations and deterministic equivalents

One of the central tools in the analysis of random matrices is the
resolvent R(z; A).11 When random matrices are defined by their en- 11 If unfamiliar, look at the background

section on resolvents Section 1.2!tries, resolvents allow the efficient computation of spectral data about
the matrix. The key combination of ideas is (1): the smooth depen-
dence of the resolvent on the entries of the matrix (and in particular
the Woodbury identity Corollary 4) and (2): the ability to efficiently
extract from the resolvent eigenvalue and eigenvector information.

The smooth dependence of the resolvent on its entries is especially
effective, when considering random matrices with independent en-
tries of near equal variance. In this case, we would rightly expect the
resolvent (which is a smooth function of many random variables)
to behave as though it were deterministic; this is to say, we can find
a deterministic matrix around which the random resolvent concen-
trates.12 12 It is quite natural to jump towards

the expected resolvent here. In some
cases (many cases), this causes no
problem, and we can and should look
at the expected resolvent. On the other
hand, if the random matrix A can have
eigenvalues in some open set U of the
plane with positive probability, the
expected resolvent (which has a notion
of spectrum) will put spectrum in this
set U . This can be undesirable as the
deterministic equivalent will lose some
qualitative similarities of the random
matrix, such as the notion of ’spectral
edge.’

The construction of this deterministic equivalent is most easily
motivated by the case of a Gaussian symmetric random matrix A.
Gaussians are determined by their covariance structure, and so this
model is fully specified by a mean matrix EA and a 4-tensor that
describes the covariances of A − EA.13 A slightly simpler setup is

13 A full account of what can happen
with a general Gaussian 4-tensor is
beyond the scope of these notes. But
some parts we will leave at this level of
generality.

to assume that the matrix A arises by letting A = P + ΣGΣ where
P is deterministic (mean) matrix, Σ ⪰ 0 is a positive semidefinite
covariance matrix, and G is GOE:

Definition 23 (GOE): A matrix G ∈ M(n) has the n-dimensional
GOE (Gaussian orthogonal ensemble) distribution if {Gij : i ≥
j} are normally distributed, mean 0, and have the normaliza-
tion EG2

ij = (1 + δij). Call the shifted matrix P + SGS affine-
GOE if P, S ∈ M(n) are symmetric and S ⪰ 0.

The normalization of diagonal vs.
off-diagonal entries of the G is by
convention and is chosen to give G the
rotation-invariance property, so that

OGO⊺ law
= G for all orthogonal matrices

O. As a consequence, there is no loss of
generality in taking S ⪰ 0, as we can
apply a polar decomposition to S.

The Dyson-equation for the resolvent provides a concise way to
find the matrix around which this resolvent concentrates. The Dyson
equation is derived, for an n-dimensional affine-GOE (or indeed for
any Gaussian random matrix) starting from the tautological identity

R(z; A)(A − z Id) = Id . (22)

To this equation, we will take expectations on both sides, assuming
for the moment that z ∈ H, the upper half-plane.

We will need a fundamental identity about the Gaussian distribu-
tion, which goes by Stein’s lemma or Gaussian integration-by-parts. To
formulate this, we’ll need the following function class:
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Definition 24 (Pseudo-Lipschitz): A function f between Banach
spaces (X, ∥ · ∥X) → (Y, ∥ · ∥Y) is α-pseudo-Lipschitz with con-
stant L (for α ≥ 0) if

∥ f (x1)− f (x2)∥Y ≤ L∥x1 − x2∥X(1 + ∥x1∥X + ∥x2∥X)
α.

As a consequence of Rademacher’s Theorem, pseudo-Lipschitz
functions on Rn are almost-everywhere differentiable, and their
derivative grows no faster than the α-power of the ∥x∥ (in any norm)
as x → ∞.

Stein’s Lemma 11 now tells us that for these functions that if Z law
=

N(0, Σ), then provided f is pseudo-Lipschitz

EZ f (Z) = ΣE∇ f (Z).

With this in hand, we can apply it to (22). Write P = EA, and con-
sider the expectation of R(z; A)ij(Ajk − Pjk). Then following Lemma
11, we have for fixed entries i, j, k 14 14 We use ⟨, ⟩ as a generic inner-product,

which will vary depending on the ob-
jects to which it is applied. For vectors
it is the standard ℓ− 2 inner-product.
For matrices it is the Hilbert-Schdmit
inner product. See the discussion in
Section 1.1

ER(z; A)ij(Ajk − Pjk) = E⟨C(jk),∇R(z; A)ij⟩

where C(jk) ∈ M(n) is a slice of the covariance tensor E((Aab −
Pab)(Ajk − Pjk)), where ∇R(z; A)ij is the Jacobian matrix of R with
respect to A, and which gives (from Corollary 3)

(∇R(z; A)ij)ab = −R(z; A)iaR(z; A)bj.

Hence we can represent this as an outer product,

(∇R(z; A)ij) = −
(

eT
i R(z; A)

)
⊗
(

R(z; A)ej
)

.

Now if we let Ã be an iid copy of A − P, we can represent

ER(z; A)ij(Ajk − Pjk) = −E⟨ÃÃjk

(
eT

i R(z; A)
)
⊗
(

R(z; A)ej
)
⟩

= −E
(

ÃjkeT
i R(z; A)ÃR(z; A)ej

)
.

Hence summing over j, we arrive at

E (R(z; A)(A − P))ik = −E
(

R(z; A)ÃR(z; A)Ã
)

ik .

We conclude the following fundamental identity: A simple condition that guarantees
pseudo-Lipschitzness is just that A is
symmetric and z ∈ H.

We write Proto-Dyson equation,
as in every situation in this text, we
will want to simplify this equation
further. There a handful of situations
(for example the Dyson equation for the
Gaussian Unitary Ensemble) in which
this equation is exact.

Lemma 14 (Proto-Dyson equation): Suppose that A is a Gaus-
sian random matrix and suppose that z ∈ C is such that
A 7→ R(z; A) is pseudo-Lipschitz, then with P = EA and Ã
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an iid copy of A − P,

E (R(z; A)(A − P)) = −E
(

R(z; A)ÃR(z; A)Ã
)

.

For a fully general covariance tensor, we may be unable to simplify
further. But for affine-GOE, we can evaluate the covariance tensor

C(jk)
ab = E((SGS)ab(SGS)jk)

= ∑
qrst

E(SaqGqrSrbSjsGstStk)

= ∑
qr

(
SaqSrbSjqSrk + SaqSrbSjrSqk

)
=
(
(S2)aj(S2)bk + (S2)ak(S2)bj

)
.

Hence, applying this to the Gaussian integration-by-parts

ER(z; A)ij(Ajk − Pjk)

= E⟨C(jk),∇R(z; A)ij⟩

= −E ∑
ab

(
(S2)aj(S2)bk + (S2)ak(S2)bj

)
R(z; A)iaR(z; A)bj

= −E
(
(R(z; A)S2)ij(R(z; A)S2)jk + (R(z; A)S2)ik(R(z; A)S2)jj

)
.

Finally, summing in j, we conclude

ER(z; A)(A − P)

= −E
(
(R(z; A)S2R(z; A)S2) + (R(z; A)S2)Tr(R(z; A)S2)

)
.

(23)

Now it will transpire that the first term is basically negligible with
respect to the second.15 15 If we imageine that R(z; A) and S2

are matrices of operator-norm bounded
independent of dimension, then the
entirety of the first term is bounded
in operator-norm, while the second
term will be (generically) an order of n
larger.

Based upon this, we define the Dyson equation for the affine-GOE.

Definition 25 (Dyson equation for the affine GOE): Let M+(n) be
the set of all symmetric, complex, n × n matrices with positive-
definite imaginary part. Define S as the linear map on M(n)
given by

S(M) := S2 Tr(MS2),

which restricts to a self-map of M+(n) when S ≻ 0 (and to the
closure of M+(n), otherwise). The Dyson equation on M+(n)
is the matrix equation

M(P − S(M)− z Id) = Id .

This leads to a general method of analysis, for finding the leading
order behavior of many random matrix theory questions.
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Definition 26 (The Dyson equation method in RMT):

1. Find a Dyson equation (apply Gaussian integration by parts
to (22)) for a Gaussian random matrix A, and finding
leading terms.

2. Show the Dyson equation (Definition 25) is uniquely
solvable.

3. Show that a solution of the perturbed Dyson equation

M(P − S(M)− z Id) = Id+ξ

for an error term ξ is close to the solution of the
unperturbed Dyson equation (stability).

4. Show that the resolvent of a random matrix (Gaussian or
otherwise) solves a perturbed Dyson equation, and hence is
close to the unperturbed equation.

This method was greatly championed
by [Erd19], [AEK20], [AEK19]. In more
limited forms, it underpins all Stieltjes-
transform based analyses of the spectral
distribution, going back to [MP67].

The exact metrics in which these comparisons are made depend on
the desired result (in which sense the solution of M should be close
to R(z; A)). If all we care about is the bulk spectral properties, then
this sense is the normalized trace.

It turns out that the second point in this list (for the affine GOE
Dyson equation), holds in complete generality.

Theorem 14: Uniqueness of the solution of the Dyson equation

There is a unique solution of the Dyson equation for the
affine GOE.

The theorem in generality is due to [HFS07, Theorem 2.1], which
relies on the contractivity of the mapping M 7→ (P − S(M)− z Id)−1

in an appropriate metric (the Carathéodory metric, which general-
izes the hyperbolic metric). In many simple cases, it can be checked
directly by using the Schwarz Lemma.

The general Dyson equation for the affine GOE is given by

M(P − S2 Tr(MS2)− z Id) = Id .

Rearranging,
M = (P − S2 Tr(MS2)− z Id)−1.

Hence if we introduce m(z) := Tr(MS2),

m(z) = Tr
(

S2(P − S2m(z)− z Id)−1
)

.

So, if we solve for the scalar m, we can express M in terms of m by

M = (P − S2m(z)− z Id)−1.
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Thus there is a single scalar equation that should be solved to find M.
We highlight a few important cases below.

Example 3: Wigner matrices and the semicircle

Suppose that P = 0 and S2 = 1
n Id. Then the Dyson equation

becomes
M(− 1

n Tr(M) Id−z Id) = Id .

Taking the normalized trace of both sides, and setting s(z) =
1
n Tr(M), we arrive at

s(z)(−s(z)− z) = 1.

As this is a quadratic equation, we can solve it explicitly,
which leads to

s(z) =
−z ±

√
z2 − 4

2
The choice of root is determined by the condition Im s(z) > 0.
Using the principal branch

√
· this turns out to be

s(z) =
−z +

√
z − 2

√
z + 2

2
.

Having solved for s, the matrix M is therefore the diagonal
matrix

M = (−s(z)− z)−1 Id = s(z) Id,

where we have applied the quadratic equation to both sides.

Example 4: The free additive convolution with the semicircle

In the more general case that S2 = 1
n Id, we have the more

complicated Dyson equation

M(P − 1
n Tr(M) Id−z Id) = Id .

Hence, setting s(z) = 1
n Tr(M), we conclude

s(z) =
1
n

Tr (P − (s(z) + z) Id)−1 .

This equation has no general closed-form solution. But it rep-
resents an important operation, referred to as the free additive
convolution (in this case, more specifically, the free additive
convolution of the spectrum of P with the semicircle law),
and lots of properties of it are known.
The solution of the Dyson equation is then

M = (P − (s(z) + z) Id)−1 .
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Example 5: The free multiplicative convolution with the semicircle

In contrast, in the case that P = 0, we instead get

M(−S2 Tr(MS2)− z Id) = Id .

If we set m(z) = Tr(MS2), then this solves

m(z) = Tr
(

S2

−S2m(z)− z Id

)
.

Hence the Stieltjes transform s(z) = 1
n Tr(M) satisfies

s(z) =
1
n

Tr
(

1
−S2m(z)− z Id

)
.

This gives the free multiplicative convolution of the spectrum of
S2 with the semicircle.
The solution of the Dyson equation is in this case

M =
(
−S2 − (s(z) + z) Id

)−1
.

2.1 Stability and the Newton flow

Suppose we let F(M; z) be the left-hand-side of the Dyson equation

F(M; z) := M(P − S2 Tr(MS2)− z Id). (24)

The resolvent will be an approximate solution of the Dyson equation,
which is to say

F(R(z; A); z)− Id = ξ ≈ 0,

in a way which will need to be quantified, and we would like to
deduce from this that

R(z; A) ≈ M, where F(M; z) = Id,

which uniquely defines M.
To do this, we need a version of something like the inverse func-

tion therem. Since the equations are potentially dimension depen-
dent, we would also like it to be somewhat quantitative.

So we define the following ordinary differential equation: This is a continuous limit of the
’damped Newton’s method’ for solving
an equation. This is not the unique flow
that one could consider for the task that
we use. For example, one could change
the flow by inserting a positive operator
on the right hand side.

Definition 27 (Newton flow): Define the Newton flow, an ordinary
differential equation for M(t) ∈ M(n) given by

d
dt

F(M(t); z) = −(F(M(t); z)− Id),

where we set ξ = F(M(0); z)− Id.
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Provided the flow is well-posed, meaning that we can solve for
d
dtM(t),16 we get that 16 Existence-uniqueness theory for

ODEs say that we can extend a solution
of an initial value-problem with locally
Lipschitz coefficients (as the Newton
flow has) to a maximal interval of time,
either forward or backward from the
inital time. Say we are going forward
in time from 0, then either the solution
exists for all time, or else it exists
on an interval [0, T) for finite T. If
the solution extends continuously to
T, then we could further extend the
solution in time. So well-posedness
means that we can solve for d

dtM(t)
at all times in terms of dynamical
variables that remain continuous (in
particular they do not blow up along
the flow).

(F(M(t); z)− Id) = e−tξ,

and hence the Newton ODE is equivalent to

d
dt

F(M(t); z) = −e−tξ. (25)

Thus, as input to the analysis of the Newton ODE, it suffices to es-
timate the error ((F(M(0); z)) − Id) at initialization (which will be
the probabilistic input for the analysis of the resolvent), as well as
showing the flow is well-posed.

For the affine-GOE, the equation that must be solved for M(t) is

d
dt

F(M(t); z) = Ṁ(P− S2 Tr(XS2)− z Id) +M(−S2 Tr(ṀS2)). (26)

The case of GOE.

We start with the case of GOE, for which the equation becomes

d
dt

F(M(t); z) = Ṁ(−s− z) +M(−ṡ),

where s(t) = 1
n Tr(M(t)). Hence if we apply the normalized trace to

both sides, we arrive at

ṡ(2s+ z) =
d
dt

(s(s+ z)) = e−t 1
n Tr(ξ).

Thus provided 2s+ z remains away from 0, we can solve for ṡ. If we
solve for ṡ, we can then solve for the Ṁ provided s+ z does not hit 0,
and the flow Ṁ is well-posed.

The simplest formal consequence of this is the following stability:

Lemma 15 (Semicircle-law-stability): Suppose that |2s(z) + z|2 >

2| 1
n Tr(ξ)| where s(z) is the Stieltjes transform of the semicircle.

Then the ODE for s exists for all time and

|s(0)− s(∞)| ≤
| 1

n Tr(ξ)|√
|2s(z) + z|2 − 2| 1

n Tr(ξ)|
.

If furthermore, the right-hand side of this equation is strictly
less than 1, then the solution of M exists for all-time, and
moreover,

M(0) =
1

s(0) + z
(M(∞)(s(∞) + z)− ξ) .

Note that when Im z > 0, since the
semicircle law has non-negative imagi-
nary part, |2s(z) + z| is bounded below
by Im z. In fact, using the formula for
s(z) we have 2s + z =

√
z − 2

√
z + 2

which vanishes at the spectral edges.
This reflects that near the spectral
edges, the spectrum of the GOE has a
different scaling.
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Proof. First, we need (2s+ z) to remain away from 0. The flow is re-
versible, and so we can either start it from 0 or we can run it back
from ∞. At time infinity, the formula is explicit and is given by the
formula for the Stieltjes transform of the semicircle (which in partic-
ular has positive imaginary part everywhere in the upper half plane).
Thus provided that√

2| 1
n Tr(ξ)| < |2s(∞) + z| = |2s(z) + z|,

we shall conclude (in what follows) that solution of s exists for all
time. This is because

d
dt

(2s(t) + z)2 = 2e−t 1
n Tr(ξ),

and hence for any neighborhood of t around ∞

(2s(t) + z)2 = (2s(z) + z)2 − 2(1 − e−t) 1
n Tr(ξ),

as we are led to the lower bound (over all t)

|2s(t) + z|2 ≥ |2s(z) + z|2 − 2| 1
n Tr(ξ)|.

Therefore, integrating the flow for ṡ, we conclude

|s(0)− s(∞)| ≤
| 1

n Tr(ξ)|√
|2s(z) + z|2 − 2| 1

n Tr(ξ)|
.

Now as for the whole Newton flow, we have

Ṁ(−s− z) +M(−ṡ) = −e−tξ,

and hence integrating in a neighborhood of t = ∞ in which the
solution exists17 17 By changing time by τ = log(1/(1 −

t)), we can bring the infinite interval of
time (0, ∞) to (0, 1). Due to the e−t, this
makes the equation well-behaved in the
τ variables at τ = 1, and so there is an
interval of time around τ = 1 in which
the solution exists.

M(∞)(−s(∞)− z)−M(t)(−s(t)− z) = −e−tξ.

Then we can solve for M(t) and produce

M(t) =
1

s(t) + z
(
M(∞)(s(∞) + z)− e−tξ

)
,

and so this flow exists and is continuous provided s(t) + z avoids 0.
At time ∞, we have

1
s(z) + z

= −s(z),

which is bounded above uniformly in z in modulus by 1. Hence

|(s(t) + z)| ≥ 1 − |s(∞)− s(t)|,

and so provided that

| 1
n Tr(ξ)|√

|2s(z) + z|2 − 2| 1
n Tr(ξ)|

< 1,

we have the Newton flow exists for all time.
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2.2 Proofs of the semicircle law

We now complete the proof of the semicircle law using the machin-
ery developed.

Theorem 15: (Easiest) Wigner semicircle

Suppose that X is a real Wigner matrix, so that {Xij, i ≥ j}
are independent and the first two moments match the GOE.
Suppose further that EX8

ij is bounded uniformly. Then the
empirical spectral measure of X/

√
n converges weakly in

probability to the semicircle law.

This is often referred to as the ’leave-
one-out’ method of proof of the semicir-
cle. Much weaker moment conditions
are needed for the semicircle law to
hold. For example, if the entries are iid,
then a finite second moment suffices
[Arn71].

Proof. Set W = X/
√

n. The statement is implied by showing that for
any fixed z with Im z > 0,

1
n Tr(W − z Id)−1 − s(z) Pr−−−→

n→∞
0,

with s(z) the Stieltjes transform of the semicircle law.
To do this, by the Stability lemma, Lemma 15 it suffices to show

that 1
n Tr(ξ) Pr−−−→

n→∞
0 where for fixed z with Im z > 0

ξ = (W − z Id)−1(− 1
n Tr((W − z Id)−1)− z Id)− Id .

Set sn(z) := 1
n Tr((W − z Id)−1). Then this satisfies

1
n Tr(ξ) = sn(z) (−sn(z)− z)− 1.

We set W [1] to be the matrix in which we remove the first row and
column of W. From the Schur complement formula,(

(W − z)−1
)

11
= (X11/

√
n − z − ⟨Y, (W [1] − z)−1Y⟩/n)−1.

Here Y = Y[1] is the first column of W, after removing its first entry.
The quadratic form concentrates, conditionally on (W [1] − z)−1, as

we can evaluate its conditional variance

E
(
|⟨Y, (W [1] − z)−1Y⟩ − Tr((W [1] − z)−1)|4

∣∣∣ X[1]
)

≤ C∥(W [1] − z)−1∥4
F

≤ Cn2| Im z|−4.

Hence by Markov’s inequality, we can bound (with W [j] and Y[j]

analogously defined in terms of removing the j-th row and column
from W)

max
1≤j≤n

1
n |⟨Y

[j], (W [j] − z)−1Y[j]⟩ − Tr((W [j] − z)−1)| Pr−−−→
n→∞

0.
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The difference in the resolvents of W and W [1] (where we include
a row and column of zeros in place of the first row/column) can be
expressed by

R(z; W) = R(z; W [1]) + R(z; W)(W [1] − W)R(z; W [1]).

Hence we can bound

|sn(z)− 1
n (R(z; W [1]))| ≤ 1

n | Im z|−2∥(W [1] − W)∥∗,

where we have bounded the resolvents in norm and ∥ · ∥∗ is the
nuclear norm. As this is a rank 2 matrix, we can bound the nuclear
norm by a (dimension-independent) constant multiple of Hilbert-
Schmidt norm and hence by the Euclidean norm of the first column
of W.

Now as we can bound the fourth moment of this norm,

max
1≤j≤n

1
n∥(W

[1] − W)∥∗
Pr−−−→

n→∞
0

Putting everything together, we have that

max
1≤j≤n

|
(
(W − z)−1

)
jj
− (−z − sn(z))−1| Pr−−−→

n→∞
0,

and hence
1
n |Tr(ξ)| Pr−−−→

n→∞
0.

This proof suffices for a global semicircle law. It does not gener-
alize well to other statistics of the resolvent. One convenient class of
statistics are generalized entries.

Definition 28 (Generalized entry): A generalized entry of a matrix
M is the trace Tr(AM) for a matrix A of nuclear norm 1.

The proof above does not extend easily to bounding generalized
entries (in particular, controlling Tr(ξA) requires exploiting cancel-
lations between different resolvents). For the Gaussian case, this is
a trivial consequence of powerful general Gaussian concentration of
measure estimates.

Theorem 16: (Easy) (Gaussian) Wigner semicircle

Let G be GOE. Then there is a constant C > 0 so for any
∥A∥∗ = 1, any t ≥ 1 and any z ∈ H,

|Tr(AR(z; G/
√

n))− Tr(A)s(z)| ≤ Ct| Im z|−4n−1/2

with probability 1 − e−t2
, provided the right hand side of the
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display is less than 1.

Proof. Let Y = G/
√

n. Applying (23) (with S2 = 1
n Id)

Id = − 1
n2 E[R(z; Y)2] + E[(R(z; Y))(−sn(z)− z)],

where sn(z) = 1
n Tr(R(z; Y)). Rearranging, we have

Eξ =
1
n2 E[R(z; Y)2].

Then for a generalized entry A

|E Tr(ξ A)| ≤ 1
n2 | Im z|−2,

where we have bounded the operator norm of ∥R(z; Y)2∥op ≤
| Im z|−2.

In preparation to apply Gaussian concentration, we can now esti-
mate the fluctuations of Tr(ξ A)

Tr(ξA) = Tr(R(z; Y)A)(−sn(z)− z)− Id .

Computing a Yij partial of this we get

∂Yij Tr(ξ A) = ∂Yij (Tr(R(z; Y)A)(−sn(z)− z)− Id)

= (R(z; Y)AR(z; Y))ij(sn(z) + z) + 1
n Tr(R(z; Y)A)((R(z; Y))2)ij.

Thus on summing the squares in preparation to use Gaussian con-
centration, Theorem 11, for an absolute constant C > 0

∑
ij
|∂Yij Tr(ξ A)|2 ≤ C

(
|sn(z) + z|2∥R(z; Y)AR(z; Y)∥2 + 1

n2 |Tr(R(z; Y)A)|2∥(R(z; Y))2∥2
)

≤ C
(
| Im z|−6∥A∥2 + 1

n | Im z|−6∥A∥2
∗

)
.

Hence we have a tail bound for all t ≥ 0 and some absolute constant
C > 0,18 18 Here we have bounded ∥A∥ ≤ ∥A∥∗.

This is costly for some A, in particular
when A = 1

n Id, in which case we
gain for free a factor of n in this tail
bound. The z dependence can also be
improved (albeit this requires more
work) by leveraging that the Stieltjes
transform sn(z) and Frobenius norm
of R has better Im z dependence than
one expects a priori, at least with high
probability.

Pr(|Tr(ξ A)− E Tr(ξ A)| > t) ≤ 2 exp
(
−nt2| Im z|6

C∥A∥2∗

)
.

The first proof of the Wigner semicircle (Theorem 15) in fact
bounded on-diagonal entries of the resolvent. This can be extended
to off-diagonal entries of the resolvent as well, but this stops short of
giving an estimate for generalized entries. So perhaps it should not
be surprising that for GOE, which is invariant to orthogonal changes
of bases, we could easily give a proof of the semicircle law in terms of
generalized entries.
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If we are to claim the Dyson equation also determines the law of
the eigenvalues of non-Gaussian matrices, then we are fundamentally
claiming that only the mean and covariance of the random matrix X
is enough to make ξ small in the sense of generalized entries. Or said
otherwise, if we were to replace X by a Gaussian matrix, we should
not change the moments of ξ by much.

Now suppose ξ is a polynomial in generalized entries of R(z; W)

with W = X/
√

n and X Wigner. Then we can look at moments of
generalized entries of resolvents. For the Dyson equation to hold,
we are claiming that these moments should be the same as with
moments of generalized entries of Y = G/

√
n, normalized GOE. So

we can try to do an exchange argument, in which we swap rows of
W out for matching Gaussian rows one at a time.

Let W be the normalized Wigner matrix X/
√

n and let G, G̃ be two
additional independent GOE matrices.

Define W0 be G/
√

n and define {W j} to be a sequence of matrices
in which we swap in rows and columns of W one at a time, i.e.

W j − W j−1 = (ej ⊗ ∆j + ∆j ⊗ ej), ∆j,i =


(X−G̃)j,i√

n , 1 ≤ i < j,
(X−G)j,j

2
√

n , i = j,
(G̃−G)j,i√

n , i > j.

Let ∆+
j and ∆−

j be analogous, where we take the random variables
in the definition of ∆ with the ± sign respectively (so that ∆j =

∆+
j − ∆j−)

Set Gj = R(z; W j), and set Ĝj−1 to be the resolvent of the matrix
where we have set all entries in the support of ∆j to 0. Note that we
have the representation for any f ∈ Rd

ej ⊗ f + f ⊗ ej = UCUT , U = [ej, f ], C =
(

0 1
1 0

)
.

Using the Woodbury formula, Corollary 4, for off-diagonal updates

Gj = Ĝj−1 − Ĝj−1Uj(C + UT
j Ĝj−1Uj)

−1UT
j Ĝj−1, Uj := [ej, ∆+

j ].

We can do the same for Gj−1, which leads to

Gj−1 = Ĝj−1 − Ĝj−1Vj(C + VT
j Ĝj−1Vj)

−1VT
j Ĝj−1, Vj := [ej, ∆−

j ].

The matrix C + VT
j Ĝj−1Vj that appears in the middle need to be

close to an invertible matrix. This requires some input. The presence
of the quadratic form suggests that this will concentrate around:

C + VT
j Ĝj−1Vj ≈ Qj := E(C + VT

j Ĝj−1Vj | Fj−1) and ∥Q−1
j ∥op ≤ P,

where Fj is the sigma-algebra generated by all {Wk : k ≤ j}. The P is
introduced here and needs to be bounded; this is related to stability.
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For the moment suppose that we can work on the event

Ej := {∥Q−1
j ∥op ≤ P}.

Now by a moment in generalized entries, we mean

Mj =
m1

∏
ℓ=1

(
Tr(Gj A(ℓ))

) m2

∏
ℓ=1

(
Tr(GjB(ℓ))

)
for some real symmetric matrices A(ℓ) and B(ℓ), and we say that
m = m1 + m2 is the order of of the moment. Then we also define

M̂j =
m1

∏
ℓ=1

(
Tr(Ĝj A(ℓ))

) m2

∏
ℓ=1

(
Tr(ĜjB(ℓ))

)
.

The moment Mj can be Taylor expanded around M̂j.
Now at first pass, we shall actually just suppose that we can re-

place C + VT
j Ĝj−1Vj by Qj in the definitions above. We can then

expand, as a terminating Taylor series

Mj = M̂j + ⟨∆+
j , T j,1⟩+ 1

2
⟨∆+

j ⊗∆+
j , T j,2⟩+ 1

6
⟨∆+

j ⊗∆+
j ⊗∆+

j , T j,3⟩+ · · · .

The tensors T j,k are independent of ∆+
j . We can do the same thing for

Mj−1, producing the same coefficients

Mj−1 = M̂j + ⟨∆−
j , T j,1⟩+ 1

2
⟨∆−

j ⊗∆−
j , T j,2⟩+ 1

6
⟨∆−

j ⊗∆−
j ⊗∆−

j , T j,3⟩+ · · · .

Now we simply want to compare conditional expectations of these
two terms. The key is that the matching first-second moment struc-
ture implies the first two terms vanish.

E(Mj − Mj−1 | Fj−2) =
m

∑
k=3

⟨E
(
(∆+

j )
⊗k − (∆−

j )
⊗k
)

, T j,k⟩.

Now we can give a naïve bound by noting that any moment can be
bounded by | Im z|−m for m given by the order of the moment, which
for Mj is m = m1 + m2. The factor T j,k is a sum of tensors which look
like outer products of

Ĝj−1 A(ℓ)Ĝj−1, Ĝj−1 A(ℓ)Ĝj−1ej,

and similar terms involving complex conjugates and B(ℓ), which are
then multiplied by a moment of order m − k and entries of Q−1. For
the third moment, these terms must look like outer products of one
of each of these types of tensors. Moreover, the expected difference

E
(
(∆+

j )
⊗3 − (∆−

j )
⊗3
)

is a diagonal tensor, and hence we have a
bound19 19 There will also be B terms, which will

be bounded the same way.
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∣∣∣⟨E ((∆+
j )

⊗3 − (∆−
j )

⊗3
)

, T j,3⟩
∣∣∣

≤ C(m)P2| Im z|−m+3

n3/2

(
max
ℓ1,ℓ2

∑
a
|(Ĝj−1 A(ℓ1)Ĝj−1)aa||(Ĝj−1 A(ℓ2)Ĝj−1)aj|

+ max
ℓ1,ℓ2,ℓ3

∑
a
|(Ĝj−1 A(ℓ1)Ĝj−1)aj||(Ĝj−1 A(ℓ2)Ĝj−1)aj||(Ĝj−1 A(ℓ3)Ĝj−1)aj|

)
Now the maximum entry of |(Ĝj−1 A(ℓ2)Ĝj−1)aj| can be bounded
using operator norms. The sum over aa we can bound using the
nuclear norm using20 20 The sum of absolute values ∑ |Maa|

can be represented as Tr(MS) for a
diagonal matrix S of norm 1 and hence
we can bound it by ∥M∥∗.∑

a
|(BAC)aa| ≤ ∥A∥∗∥B∥op∥C∥op.

We can do the same for the terms in the second line, bounding 21 21 The left hand side again is
Tr((e⊗j 2)DSBAC) for a diagonal matrix
of phases S. Now apply the prevous
inequality.

∑
a
|Daj(BAC)aj| ≤ ∥D∥op∥A∥∗∥B∥op∥C∥op,

and we are led to (using the nuclear norm bound on A.)22 22 Here we have pessimistically
bounded the contribution of the lower
order moment by | Im z|−m+3. But we
could do much better by working by
induction on the order of the moment,
and show that we have the same order
of magnitude of the moment as the
Gaussian case, as the error we get in
comparison are no larger.

∣∣∣⟨E ((∆+
j )

⊗3 − (∆−
j )

⊗3
)

, T j,3⟩
∣∣∣

≤ C(m)P2| Im z|−m+3

n3/2

(
| Im z|−4∥A∥op + | Im z|−6∥A∥2

op

)
.

Now the error is good enough that we can now sum over all n. There
are lots of details to fill in (higher terms in the series, bounding P,
adding control over the terms we dropped from Q−1

j – for which
we can use concentration of quadratic forms), but these are all the
same type of estimate. This brings us to an estimate of the form, for
∥A∥∗ ≤ 1, 23 23 At global scale (Im z) bounded away

from the axis, this is the best possible
with this type of formulation, but there
is a lot to gain by considering better
estimates for good A (such as Id /n)
and sharpening the dependence in
| Im z|−1.

E|Tr(ξ A)|m ≤ C(m, | Im z|−1, max
ij

∥Xij∥m)n−m/2.

Stability for P+GOE

This section was written as an exercise, and can be safely ignored for those
looking to learn random matrix theory, random matrix theory and optimiza-
tion, or just about anything that does not directly concern the P+GOE.

In this case (26) becomes, with s(t) = 1
n Tr(M(t)),

d
dt

F(M(t); z) = Ṁ(P − (s(t) + z) Id) +M(−ṡ(t)).

We are looking to once more show that this flow is well-posed and
provide some estimates on how it evolves. We are in particular look-
ing for which estimates we should make on ξ to bound the difference
of M(0) and M(∞).
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Let P = ∑n
j=1 λjΠj be a spectral decomposition of P, with Πj

rank-1 projection matrices. Set pj(t) = 1
n Tr(M(t)Πj). Then

Tr
(

d
dt

F(M(t); z)
)
= ṗj(t)(λj − s(t)− z)− pj(t)ṡ(t).

Thus the Newton flow becomes

ṗj(t)(λj − s(t)− z)− pj(t)ṡ(t) = −e−t 1
n Tr(ξΠj) =: −e−tψj.

We further have that s = ∑j pj, and hence we can write a matrix-
vector equation

L(t)ṗ(t) = −e−tψ,

where the entries of the matrix L are given by

Ljk = δjk(λj − s(t)− z)− pj(t).

Using the Woodbury formula (Corollary 4), we have (provided we
are away from all the poles)

(L−1)jk = δjk
1

λj − s(t)− z

−
pj(t)

(λj − s(t)− z)(λk − s(t)− z)
1

1 − ∑
pj(t)

λj−s(t)−z

.

Hence we introduce the summed error

Ψ(z) = ∑
j

ψj

(λj − z)

= 1
n Tr

(
ξ(P − z Id)−1

)
.

We also let

r(t) = ∑
j

pj(t)
(λj − s(t)− z)

= 1
n Tr(M(t)(P − (s(t) + z) Id)−1).

Then we conclude

ṗj(t) = −e−t

(
ψj

λj − s(t)− z
−

pj(t)
λj − s(t)− z

Ψ(t; s(t) + z)
(

1
1 − r(t)

))
,

(27)
and hence

ṡ(t) = −e−tΨ(t; s(t) + z)
(

1 − r(t)
1−r(t)

)
. (28)

We also need to estimate ṙ(t), as ṡ is sensitive to r(t). Taking time
derivatives of r,

ṙ(t) = 1
n Tr

(
Ṁ(t)(P − (s(t) + z) Id)−1 +M(t)(P − (s(t) + z) Id)−2ṡ(t)

)
= 1

n Tr
(
−e−tξ(P − (s(t) + z) Id)−2 + 2M(t)(P − (s(t) + z) Id)−2ṡ(t)

)
.

(29)
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So we fix a δ > 0 and define for p ≥ 2

Ξ := max{|Ψ(s + z)| : s ∈ C, |s − s(∞)| < δ},

Ξp := max{| dp

(dz)p Ψ(s + z)| : s ∈ C, |s − s(∞)| < δ/2}.

From the Cauchy integral formula Ξ1 ≤ 2
δ Ξ. Define

∆(t) := sup
u∈[t,∞]

(
max

j

{
1

|λj − s(u)− z|

}
,

1
|1 − r(u)| ,

|1 − 2r(u)|
|1 − r(u)| , 1

)
.

From (28),
|s(t)− s(∞)| ≤ ∆(t)Ξ,

provided ∆(t)Ξ ≤ δ. Set

p∗(t) = sup
u∈[t,∞]

max
j

∥pj(u)∥ and ψ∗ = max
j

∥ψj∥.

Then again if ∆(t)Ξ ≤ δ,

|ṙ(t)| ≤ e−t
(

Ξ1 + ∆(t)3p∗(t)Ξ.
)

,

and hence
|r(t)− r(∞)| ≤

(
Ξ1 + ∆(t)3p∗(t)Ξ.

)
.

Similarly,
max

j
|pj(t)− pj(∞)| ≤ ∆2(ψ∗ + p∗(t)Ξ).

This allows us to show that good conditions at t = ∞ (measured by
∆(∞) being small) will persist over time. So, provided that ∆(∞),
p∗(∞), then if ψ∗ and Ξ and are small enough, we conclude

∆(0) ≤ 2∆(∞) and p∗(0) ≤ 2p∗(∞),

provided 2∆(∞)Ξ ≤ δ.
The constants that suffice for this are:

4∆(∞)2(ψ∗ + 2p∗(∞)Ξ) ≤ p∗(∞),

4∆(∞)( 2
δ Ξ + 8∆(∞)3p∗(∞)Ξ) ≤ 1,

8∆(∞)2Ξ ≤ 1.

(30)

The first bound ensures that pj does not grow too much. The second
ensures that 1 − r(t) does not get too small, and the last ensures that
s(t) does not get too close to λj − z. Then under (30) and provided
2∆(∞)Ξ ≤ δ,

|s(0)− s(∞)| ≤ 2∆(∞)Ξ.

We conclude the following proposition:
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Lemma 16 (Stability for P + GOE): Suppose that z ∈ H and sup-
pose that ϱ(z) = ϱ(z; P) is the distance of z to the spectral sup-
port of P+GOE. Let s(z) be the Stieltjes transform of P+GOE.
Then there are constants C, δ, depending only on ϱ(z), so that if
the solution of the perturbed Dyson equation satisfies

C(ϱ(z))(nψ∗ + Ξ) ≤ 1

then the Newton flow is well-posed and satisfies

|s(0)− s(∞)| ≤ (4 + ϱ(z)−1)2Ξ.

If bulk convergence is all that is desired,
then we can just stay at a fixed distance
from the real line. For support conver-
gence statements, it is more helpful to
have the distance to the spectrum.

Proof. The solution of the Dyson equation is defined in terms of

s(z) =
1
n

Tr (P − (s(z) + z) Id)−1 ,

which leads to
M = (P − (s(z) + z) Id)−1.

Hence, the spectrum of M we can define by Stieltjes inversion as

µP(dx) = lim
ϵ→0

1
π

Im s(z).

This is a probability measure as s(z) is asymptotic to −1
z as z = it and

t → ∞ by Theorem 6.24 We can also define the distance of a point z to 24 Show that the mapping s 7→ 1
n Tr(P −

(s(z) + z) Id)−1 maps a neighborhood
of −1

z to itself for z = it with large t.
this spectrum by

ϱ(z) = d(z, Supp(P))) ≥ | Im z|.

Differentiating the fixed point equation in z we arrive at

s′(z) =
1
n

Tr (P − (s(z) + z) Id)−2 (s′(z) + 1)

At time ∞ we have

r(∞) = 1
n Tr(M(∞)(P − (s(∞) + z) Id)−1).

Then using the solution of Dyson equation

r(∞) = 1
n Tr((P − (s(∞) + z) Id)−2).

Hence

r(∞) =
s′(z)

s′(z) + 1
,

and so
1

1 − r(∞)
= s′(z) + 1.
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Now the Stieltjes transform s(z) is

s(z) =
∫

R

1
x − z

µP(dx)

for the self-consistent spectral measure µP, and hence this has a z-
derivative bounded in terms of the distance of z to the spectral sup-
port of µP. In particular,

|s′(z)| ≤ ϱ(z)−2.

Hence we arrive at a bound in terms of the imaginary part of z only

|∆(∞)| ≤ max
{

ϱ(z)−1, 1 + ϱ(z)−2, 2 + ϱ(z)−1
}

.

We can also bound p∗(∞) ≤ 1
n ϱ(z)−1. We conclude there is a constant

depending only on ϱ(z)−1, so that if

(2 + ϱ(z)−1)9(Ξ + nψ∗) ≤ 1,

then with δ = ϱ(z)/2

|s(0)− s(∞)| ≤ (4 + ϱ(z)−1)2Ξ.

2.3 Sample covariance matrices and linearizations

The key random matrix for our applications will be the sample co-
variance matrix. This is a random matrix A built as the empirical
covariance matrix of n random vectors in Rd

Definition 29 (Sample covariance matrix): Suppose that
X1, X2, . . . , Xn are n random vectors in Rd. Let X ∈ M(n, d) be
the random matrix whose k-th row is given by Xk, the (d × d)
sample covariance matrix

A = 1
n XTX,

or sometimes the feature-feature covariance matrix. We also con-
sider the sample-sample covariance matrix

Â = 1
n XXT .

We will usually consider the {Xk} as being iid and centered, in
which case A is the natural statistical estimator of the covariance
matrix of X1.

The random matrix theory of A follows a nearly parallel develop-
ment to the affine GOE. The nonlinear dependence of A on the un-
derlying random matrix X has a substantial effect upon the spectrum
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of A, chiefly that it makes the matrix positive semidefinite. Beyond
this, we will put the good probabilistic assumptions on X and not
on A (especially {Xk} iid with good distributional assumptions, e.g.
Gaussian), and so we need to properly handle the non-linear depen-
dence of the matrix on the underlying randomness.

For the purpose of developing a Dyson equation, this is handled
by an important idea of a linearization.

Definition 30 (Linearization): Let p ∈ M(n) be a rational ex-
pression in matrix variables (A1, A2, ..., Ak), in vector spaces
V1, V2, ..., Vd. A linearization of p is an (affine) linear function
L : V1 × V2 × · × Vd to M(n + d)(

L(A1, ..., Ak)
−1
)

11
= p(A1, A2, . . . , Ak),

where we have partitioned the rows/columns of M into two
blocks.

There is a larger theory of linearizations and how to find them (see
[MS17] for a discussion), as well as algorithms for finding them. We
shall focus on a single linearization in this section:

L :=

[
−z Idd

1√
n XT

1√
n X − Idn

]
. (31)

We can a direct computation of this inverse, using the Schur com-
plement formula (Lemma 1), which leads to

L−1 =

[
( 1

n XTX − z Idd)
−1 − 1√

n XT(Idn − 1
nz XXT)−1

1√
n X( 1

n XTX − z Idd)
−1 −(Idn − 1

nz XXT)−1

]
,

and so is a linearization of the resolvent (A − z Idd)
−1.

Now in the Gaussian case, with X law
= N(0, Idn ⊗Σ), 25 we may 25 This is to say X has independent

rows, which are normal and have
covariance Σ.

apply Lemma 14

E(L−1(L − EL)) = −E(L−1(L̃ − EL)L−1(L̃ − EL)),

where L̃ law
= L and is independent of L. Evaluating this expectation,

we have (replacing L−1 by a matrix M for notational simplicity)

E((L̃ − EL)M(L̃ − EL)) =
1
n

[
E(XT M22X) E(XT M21XT)

E(XM12X) E(XM11XT)

]
.

This we can further evaluate as

E((L̃ − EL)M(L̃ − EL)) =
1
n

[
Σ Tr(M22) ΣMT

21
MT

12Σ Tr(M11Σ)

]
.
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To define the Dyson equation, we again drop terms we expect to
be lower order, here given by the off-diagonals. This leads us to the
following:

Definition 31 (Dyson equation for SCM of independent samples):
The Dyson equation for the matrix (31), in the case that X has
independent centered rows of covariance Σ, is

M(EL − S(M)) = Idn+d, (32)

where the mean and superoperator S are given by

EL =

[
−z Idd 0

0 − Idn

]
,

and

S(M) =

[
Σ( 1

n Tr(M22)) 0
0 1

n Tr(M11Σ) Idn

]
.

The matrix M ∈ M(n + d) satisfies that Im M11 ⪰ 0.

The existence and uniqueness of the solution of this equation no
longer immediately follows from the general fixed-point theorem
(Theorem 14). However, we only need to do a few changes.

Theorem 17: Deformed Marchenko-Pastur Law

The solution of the Dyson equation for the independent sam-
ple SCM (31) is determined by

−m(z) =
1

1 + 1
n Tr

(
Σ

−Σm−z Idd

) ,

which has a unique solution for z ∈ H with Im m(z) > 0. In
terms of m(z), the solution of the Dyson equation is given by

M =

[
M11 0

0 M22

]
,

{
M11 = (−Σm(z)− z Id)−1,

M22 = m(z) Idn .

The Stieltjes transform is given in terms of m by

1
d Tr(M11) =

(n
d
− 1
) 1

z
+

n
d

m(z)
z

.

Proof. We set m(z) = 1
n Tr(M22). We expand (32)

M11(−Σm(z)− z Idd) = Idd

M22(− Idn − 1
n Tr(M11Σ) Idn) = Idn
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Then we can solve for M11 and substitute it into the second equation,
which produces

M22

(
− Idn − 1

n Tr
(

Σ
−Σm(z)− z Idd

)
Idn

)
= Idn .

Taking the normalized trace on both sides, we arrive at

−m(z)
(

1 + 1
n Tr

(
Σ

−Σm(z)− z Idd

))
= 1.

Now the mapping

m 7→ −1

1 + 1
n Tr

(
Σ

−Σm−z Idd

)
is an analytic self map from H → H. Hence it is a (possibly non-
strict) contraction in the hyperbolic metric by the Schwarz-Lemma.
Such a mapping is strict contraction if and only if the map is not a
Möbius transformation fixing H. This is if and only if

m 7→ Tr
(

Σ
−Σm − z Idd

)
is not a Möbius transformation fixing H (having applied a hyperbolic
isometry). However, this maps the real line properly into the upper
half plane by the positivity of Im z, and so the mapping was a strict
contraction in the hyperbolic metric.26 26 This also shows that the fixed point

iteration, started from m = −1 always
converges. Note that for large z, m ≈
−1 is a good approximation.

Hence there is a unique fixed point of

m 7→ 1

1 + 1
n Tr

(
− Σ

Σm−z Idd

)
in the upper half plane, and so Im m > 0. This means M11 exists and
is given by

M11 = (−Σm(z)− z Id)−1,

and also M22 exists and is given by

M22 = (− Idn − 1
n Tr(M11Σ) Idn)

−1 = m(z) Idn .

Finally, we note that the Stieltjes transform can be extracted from
m, since

s(z) = 1
d Tr(M11)

= 1
dz Tr(zM11)

= 1
dz Tr((z + Σm(z)− Σm(z))M11)

= (− 1
z +

1
dz Tr(−Σm(z)M11))

= (− 1
z +

n
dz (m(z) + 1))

= ( n
d − 1) 1

z +
n
dz m(z).
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Example 6: Marchenko-Pastur law

Suppose that Σ = Idd. Then we have the equation for m

m =
−1

1 + d
n

−1
m+z

.

We can solve this equation for m, first simplifying the equa-
tion to be

−(m + z) = m(m + z − d
n ),

and hence
m2 + m(z − d

n + 1) + z = 0,

so that

m =
−(z − d

n + 1)±
√
(z − λ+)(z − λ−)

2
,

where λ± = (
√

d
n ± 1)2.

Hence the Stieltjes transform is given by

s(z) = ( n
d − 1) 1

z +
n
dz m(z)

=
−(z + d

n − 1)±
√
(z − λ+)(z − λ−)

2 d
n z

.

The branches can be determined by the sign requirements on
the imaginary part and the condition that s(z) vanishes as
z → ∞ (note the sign depends on z if taking the principal
branch of

√
·). Performing Stieltjes inversion, this leads to

s(x + i
t )

dx
π

law−−→
t→∞

(
1 − n

d
)
+

δ0 +

√
[(λ+ − x)(x − λ−)]+

2 d
n x

,

which is the Marchenko-Pastur law.

2.4 Stability of the Dyson equation for sample covariance matrices

We again use the Newton flow to show that the solution of the per-
turbed Dyson equation is close to the unperturbed equation. So we
define the operator

F(M; z) := M(EL − S(M))− Idn+d,

and we introduce the Newton flow

d
dt

F(M(t); z) = −F(M(t); z) where F(M(0); z) = ξ.

Once more, we need to show that this flow is well-posed (so the
equation is uniquely solvable for all time), and we would like to
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bound the difference between its value at t = 0 and t = ∞ in terms
of ξ. This will allow us to show the solution of the Dyson equation
(which is given by Theorem 17) is close to the linearization of the
sample covariance matrix. We note that provided it is well-posed, the
value of the objective function F(M(t); z) can be easily integrated
along the flow to give e−tξ. (And so on a maximal interval of exis-
tence of the flow, either started from t = ∞ or from t = 0, we can
simply use this formula, on way to justifying this maximal interval is
[0, ∞])

We introduce the scalar variables

s := s(t) := 1
n Tr(M11(t)),

q := q(t) := 1
n Tr(M11(t)Σ),

m := m(t) := 1
n Tr(M22(t)).

This we express (using A ⊕ B to denote the block matrix
(

A 0
0 B
)
),

d
dt

F(M(t); z) = Ṁ ((−Σm− z Id)⊕ (− Id)(1 + q))

+M(−Σṁ⊕−q̇).

We let Σ = ∑ λjΠj and introduce

pj := pj(t) := 1
n Tr(M11Πj).

Then using that F(M(t); z) = −e−tξ along the flow,

−e−t 1
n Tr(ξ11Πj) = ṗj(−λjm− z) + pj(−λjṁ)

−e−t 1
n Tr(ξ22) = ṁ(−(1 + q)) +m(−q̇).

(33)

Note that we can write

s = ∑
j
pj and q = ∑

j
λjpj.

Now we detour briefly to cover the simpler case of the Marchenko-
Pastur law, which is to say that Σ = Idd. In this case, q = s we can
consider the two parameter dynamical system (s,m). Here we can
simplfy (33) to become

−e−t 1
n Tr(ξ11) = ṡ(−m− z) + s(−ṁ)

−e−t 1
n Tr(ξ22) = ṁ(−(1 + s)) +m(−ṡ).

(34)

Hence we can write this as matrix equation[
m+ z s

m 1 + s

] [
ṡ

ṁ

]
= e−t

[
1
n Tr(ξ11)
1
n Tr(ξ22)

]
,

which we formally invert to give[
ṡ

ṁ

]
=

e−t

a(t)

[
1 + s −s

−m m+ z

] [
1
n Tr(ξ11)
1
n Tr(ξ22)

]
,
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where a = (m+ z)(1 + s)− sm. Thus, we need to ensure that a stays
away from 0, and if it does, then we are are going to be happy.

This a will, as in the case of the semicircle law, measure how close
the flow comes to the spectral edge. The following works in the same
way as the Lemma 15.

Lemma 17 (MP Stability): Let D(z) := max{|m(z)|, |s(z)|, 1, |z|}
for z ∈ H. There is an absolute constant c > 0 so that if

D(z)2(| 1
n Tr(ξ11)|+ | 1

n Tr(ξ22)|) ≤ c|m(z)− z
m(z) |

2,

then the ODE for s and q is well-posed for all t ∈ [0, ∞] and

max{|ṡ|, |ṁ|} ≤ e−t6D
|m(z)− z

m(z) |2
(| 1

n Tr(ξ11)|+ | 1
n Tr(ξ22)|).

Hence, to prove the Marchenko-Pastur law, it suffices to bound
both | 1

n Tr(ξ11)| and | 1
n Tr(ξ22)|.

The parameter a(∞) = m(z)− z
m(z) vanishes precisely at the edges

of the Marchenko-Pastur law, and it can be checked to be given by

m(z)− z
m(z) = ±

√
(z − λ+)(z − λ−),

with the sign conventions the same as in the m that appears in the
Marchenko-Pastur law.

General case

We return to (33), in which we can substitute the second equation
into the first equation to produce

e−t 1
n

(
−Tr(ξ11Πj) + Tr(ξ22)λj

pj
1+q

)
= ṗj(−λjm− z) + q̇

λjpjm

1+q .

The right hand side of the equation we can express as a linear
combination of the vector ṗ. In particular there is a matrix L depend-
ing on m, q and p so that for all j

(Lṗ)j = e−t 1
n

(
−Tr(ξ11Πj) + Tr(ξ22)λj

pj
1+q

)
.

Moreover we can formally invert this matrix, as it is a rank-1 per-
turbation of the diagonal matrix (−λjm − z) using the Woodbury
identity. In particular, we have

L = Diag(−λjm− z) +
(

λjpjm

1+q : j
)
⊗ (λk : k).
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This produces

L−1

= Diag( −1
λjm+z )

− (
λjpjm

(1+q)(λjm+z) : j)⊗ ( λk
λkm+z : k)

 1

1 − ∑j
λ2

j pjm

(1+q)(λjm+z)

 .

As it arises naturally, we define

r := ∑
j

λ2
j pj

(1+q)(λjm+z) and ψj := 1
n Tr(ξ11Πj).

Thus we arrive at the equation for ṗ

ṗj = e−t

ψj − 1
n Tr(ξ22)

λjpj
1+q

λjm+ z
+ pj

λjm
(

1
n Tr(ξ11Σ(Σm+ z)−1)− 1

n Tr(ξ22)r
)

(1 + q)(1 − rm)(λjm+ z)

 .

(35)
Summing against λj in j produces

q̇ = e−t
(

1
n Tr(ξ11Σ(Σm+ z)−1)

(
1 +

rm

(1 + q)(1 − rm)

)
− 1

n Tr(ξ22)r

(
(1 − rm) + rm

(1 + q)(1 − rm)

))
.

So we define

∆(t) := sup
u∈[t,∞]

max
{
∥(Σm(u) + z)−1∥op, 1

|1+q(u)| ,
1+|r(u)|+|m(u)|

min{|1−r(u)m(u)|,1}

}
.

We also define for any δ > 0

Ξ = max
{
| 1

n Tr
(

ξ11(Σ(Σm + z)−1)p
)
|+ | 1

n Tr(ξ22)| : p ∈ {1, 2}, |m −m(∞)| ≤ δ
}

,

and finally, we define

p∗(t) = sup
u∈[t,∞]

max
j

|pj(u)| and ψ∗ = max
j

|ψj|.

Now we suppose that ∆(∞) < ∞, and we look to give conditions
(bounds on Ξ and ψ∗) which will ensure the flow exists for all time
[0, ∞].

Note that provided that |m(u)−m(∞)| ≤ δ for all u ≥ t we have

|q̇(t)| ≤ e−tΞ(|1 + ∆(t)|)2,

and hence also
|ṁ(t)| ≤ e−tΞ(|1 + ∆(t)|)3.

To ensure that ∆ remains bounded along the flow, we also need to
bound the evolution of pj and r. This gives

|ṗj(t)| ≤ e−t
(

∆(t)ψ∗ + (∆(t)2Ξ∥Σ∥op + ∆(t)3Ξ)|pj(t)|
)

,
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and so

|ṙ(t)| ≤ e−t 1
1 + q(t)

1
n

(
Tr
(

ξ11Σ2(Σm(t) + z)−2
))

+ e−tn∆(t)2∥Σ2∥op

(
∆(t)2Ξ∥Σ∥opp

∗ + p∗∆(t)3Ξ
)

+ e−tn∆(t)3∥Σ2∥opp
∗
(

Ξ(1 + ∆(t))3
)

.

Now putting all these bounds together, we can conclude that there
is an absolute constant c > 0 so that if27 27 The first inequality ensures the

differences of q, m over time is small
enough that ∆ cannot grow. The first
line of ṙ is controlled as well by this.
Assuming ∆(t) ≤ 2∆(∞) one then
bounds by Gronwall’s inequality p∗.
Finally the last inequality ensures the
terms in second/third terms of ṙ do not
cause ∆ to grow too much.

Ξ((1 + ∥Σ∥op)∆(∞))4 ≤ c,

Ξ((1 + ∥Σ∥op)∆(∞))6(nψ∗ + np∗(∞)) ≤ c,
(36)

and Ξ(1 + 2∆(∞))3 ≤ δ, then the whole Newton flow is well-posed
and28

28 To see these bounds, start from trying
to show that ∆(t) ≤ 2∆(∞). Now
so long as this is true, we can bound
the derivatives of q,m, pj, r, and hence
we can bound (in terms of 2∆(∞))
how much ∆ can grow, and hence
verify over the lifetime of the flow that
∆(t) ≤ 2∆(∞). This also implies the
flow exists over all t ∈ [0, ∞].

∆(0) ≤ 2∆(∞).

Furthermore, we have

|m(0)−m(∞)| ≤ Ξ(1 + 2∆(∞))2.

We conclude with the following general stability statement.
We conclude the following proposition:

Lemma 18 (Stability for deformed MP): Suppose that z ∈ H

and suppose that ϱ(z) = ϱ(z; Σ) is the distance of z to
the spectral support of the deformed MP law with parame-
ters (n, Σ). Then there are constants C, δ, depending only on
( d

n , ϱ(z)−1, ∥Σ∥op, |z|), so that if the solution of the perturbed
Dyson equation satisfies

C( d
n , ϱ(z)−1, ∥Σ∥op, |z|)(nψ∗ + 1)Ξ ≤ 1

then the Newton flow is well-posed and satisfies for all t ∈
[0, ∞],

max {|ṡ|, |ṁ|, |q̇|} ≤ e−tC( d
n , ϱ(z)−1, ∥Σ∥op, |z|)Ξ.

Furthermore, for every ϵ ∈ (0, ϵ0) there is a finite collection of
matrices {Aj} of cardinality at most C/ϵ2, commuting with Σ

and having norm at most ∥Σ∥op
nϱ(z)2 so that

Ξ ≤ C( d
n , ϱ(z)−1, ∥Σ∥op, |z|)n2ϵψ∗+max

j
|Tr(ξ11 Aj)|+ | 1

n (Tr ξ22)|.

Informally, this theorem says: if gen-
eralized entries of ξ11 are small then
the deformed Marchenko-Pastur law is
true. More precisely, we need ψ∗ to be
not-too-big (in fact we should expect it
to shrink), and we need some collection
of other test matrices to be small. Note
that we can take ϵ much smaller than
1/n, provided we have good enough
bounds in probability on the error term.
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Proof. We need to estimate some properties of the solution of the
Dyson equation. We have from Theorem 17,

t(z) := q(∞) =
1
n

Tr(M11Σ) = − 1
n

Tr(Σ(Σm(∞) + z Idd)
−1),

m(z) = m(∞) =
−1

1 + t(z)
.

We also have from Theorem 17

s(z) :=
1
d

Tr(M11) =
(n

d
− 1
) 1

z
+

n
d

m(z)
z

.

The spectrum of M11 we can define by Stieltjes inversion as

µΣ(dx) = lim
ϵ→0

1
π

1
d

Tr(M11).

We can also define the distance of a point z to this spectrum by

ϱ(z) = d(z, Supp(µΣ) ∪ {0}) ≥ | Im z|.

Then we have s(z) can be trivially bounded in terms of ϱ(z), since

s(z) =
∫

R

µΣ(dx)
x − z

,

and so that
|s(z)| ≤ 1

ϱ(z)
.

Now we can also use Stieltjes representation on pj =
1
n Tr(M11Πj),

which gives another set of probability measures {µ
j
Σ}

1
n

1
−λjm(z)− z

= pj(z) =
∫

R

1
n

µ
j
Σ(dx)
x − z

.

Then we have

µΣ =
1
n

d

∑
j=1

µ
j
Σ,

and hence we can also bound pj in terms of the distance ϱ. In partic-
ular

1
|λm(z) + z| = n|pj(z)| ≤ ϱ−1(z).

We shall therefore take δ = ϱ(z)
2∥Σop∥ (used in the definition of Ξ) which

ensures that (Σm + z)−1 will remain invertible.
As a corollary, we can represent

t(z) =
1
n

n

∑
j=1

λj pj(z),
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and so bound

|t(z)| ≤ Tr(Σ)
n

1
ϱ(z)

.

Solving for m in terms of s, we have

|m(z)| ≤ d
n

(
|z|

ϱ(z)

)
+

∣∣∣∣ dn − 1
∣∣∣∣ .

Finally, we let

r(z) = r(∞) = − 1
n

Tr
(

Σ2m(z)(Σm(z) + z)−2
)

.

We begin by observing that

r(z) =
1
n

Tr
(

Σ(Σm(z) + z)−1
)
− z

n
Tr
(

Σm(z)(Σm(z) + z)−2
)

= −t(z)− z
(

t′(z)− m′(z)r(z)
m(z)

)
,

where we have differentiated t(z) in z to produce

t′(z) =
1
n

Tr(Σ(Σm′(z) + 1)(Σm(z) + z)−2)

=
m′(z)r(z)

m
(z) +

1
n

Tr(Σ(Σm(z) + z)−2).

We also have that t′(z) = m′(z)/m(z)2, and so we conclude that

r(z)m(z) = 1 + m(z)− z
m(z)

(1 − r(z)m(z))m′(z),

and hence solving for 1 − r(z)m(z),

1 − r(z)m(z) =
m(z)

1 − z
m(z)m′(z)

,

or that (using 1
m(z) = −(1 + t(z)))

1
1 − r(z)m(z)

= −(1 + z(1 + t(z))m′(z))(1 + t(z)).

Thus this can only explode where m′(z), but it easily seen this is
bounded in terms of d

n , ∥Σ∥op, 1
ϱ(z) , |z|. Similar bounds hold for r(z).

All of these together bound ∆(∞), and so from (36) the first two
conclusions of the lemma follow.

As for the second part, we choose the matrices Aj,p to be

Aj,p :=
1
n

Σ(Σmj + z)−p,

where mj runs over an ϵ-net of the complex disk D := |m −m(∞)| ≤
δ and p ∈ {1, 2}. Now we note for any other m in D, if we let m0 be
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the closest point in the net,∣∣∣∣ 1n Tr(ξ11Σ(Σm0 + z)−p)− 1
n

Tr(ξ11Σ(Σm + z)−p)

∣∣∣∣
≤ ψ∗ × ∑

j

∣∣∣∣∣ λj

(λjm0 + z)p −
λj

(λjm + z)p

∣∣∣∣∣
≤ Cpψ∗ϵϱ−p−1(z)

(
∑

j
λ2

j

)
,

from how δ was chosen.

2.5 Proof of the deformed MP law

Now we turn to bounding the errors that appear in the Dyson equa-
tion for the deformed MP law.

This is to say, that we wish to show the linearization L−1 approx-
imately satisfies the Dyson equation. The error term ξ can be ex-
pressed by

ξ11 = ( 1
n XTX − z Idd)

−1
(

Σ 1
n Tr(−(Idn − 1

nz XXT)−1)− z Idd

)
− Idd,

ξ22 = (Idn − 1
nz XXT)−1(1 + 1

n Tr(( 1
n XTX − z Idd)

−1Σ))− Idn .

Set mn(z) = 1
n Tr(−(Idn − 1

nz XXT)−1) and tn(z) = 1
n Tr(( 1

n XTX −
z Idd)

−1Σ).
Note that by considering the eigenvalues of XXT , we can also

express mn(z) by

1
z mn(z) = 1

n Tr(( 1
n XXT − z Idn)

−1)

= − (n − d)
n

1
z
+

1
n

Tr(( 1
n XTX − z Idd)

−1).
(37)

Now we will only need to consider traces of ξ22 to get the sim-
plest case of the deformed Marchenko-Pastur law. So that using this
notation, we have

ξ11 = ( 1
n XTX − z Idd)

−1 (Σmn(z)− z Idd)− Idd
1
n Tr(ξ22) = −mn(z)(1 + tn(z))− 1.

(38)

We define Q = 1
n XTX, which we can represent alternatively, as a

tensor product, as

Q =
1
n

n

∑
j=1

Xj ⊗ Xj.

We also define Q[i] as the same without the i-th sample, so

Q[i] :=
1
n

n

∑
j ̸=i

Xj ⊗ Xj.
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Then using the Woodbury identity,

(Q− z Id)−1 = (Q[i]− z Id)−1 − 1
n
((Q[i] − z Id)−1Xi)⊗ ((Q[i] − z Id)−1Xi)

1 + 1
n ⟨Xi, (Q[i] − z Id)−1Xi⟩

.

Starting from the tautology

Id = R(z; Q)(Q − z Id)

= −zR(z; Q) +
1
n

n

∑
i=1

R(z; Q)(Xi ⊗ Xi)

= −zR(z; Q) +
1
n

n

∑
i=1

R(z; Q[i])(Xi ⊗ Xi)−
1
n

n

∑
i=1

ai
1 + ai

((Q[i] − z Id)−1Xi)⊗ Xi,

= −zR(z; Q) +
1
n

n

∑
i=1

(
R(z; Q[i])

1 + ai

)
(Xi ⊗ Xi),

where we have set ai =
1
n ⟨Xi, (Q[i] − z Id)−1Xi⟩.

In the second term, we expect that we can trade Xi ⊗ Xi for Σ, so
we introduce an error matrix

α1 :=
1
n

n

∑
i=1

(
R(z; Q[i])

1 + ai

)
(Xi ⊗ Xi − Σ). (39)

Then resumming, we produce a second error term

1
n

n

∑
i=1

(
R(z; Q[i])

1 + ai

)
=

1
n

n

∑
i=1

(
R(z; Q)

1 + ai

)

+
1
n2

n

∑
i=1

((Q[i] − z Id)−1Xi)⊗ ((Q[i] − z Id)−1Xi)

(1 + ai)2

=:
R(z; Q)

1 + tn(z)
+ α2.

(40)
In summary, we have

Id = −zR(z; Q) +
R(z; Q)

1 + tn(z)
Σ + α2Σ + α1

= −zR(z; Q)− mn(z)R(z; Q)Σ

(
1

1 + 1
n Tr ξ22

)
+ α2Σ + α1

(41)

Hence using (38) we conclude

ξ11 = mn(z)R(z; Q)Σ

(
1
n Tr ξ22

1 + 1
n Tr ξ22

)
+ α2Σ + α1. (42)

If we take 1
n Tr(·) of both sides of (41) and apply (37), we also arrive

at
d
n
= −mn(z)−

(
1 − d

n

)
+

tn(z)
1 + tn(z)

+
1
n

Tr(α2Σ + α1),
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so that putting everything together,

1
n

Tr(ξ22) = −mn(z)(1 + tn(z))− 1 = −(1 + tn(z))
1
n

Tr(α2Σ + α1).
(43)

In light of everything, the deformed Marchenko-Pastur law follows
simply by estimating the errors α1 and α2.

Theorem 18: Deformed MP law

Suppose that {Xj} are iid centered random vectors with co-
variance matrix Σ that satisfy the concentration inequality
that for some q ≥ 1,

∥⟨X1, AX1⟩ − Tr(AΣ)∥q ≤ C′
q∥A∥HS.

Then for all q ≥ 8, there is a Cq(| Im z|−1, |z|, ∥Σ∥op, C′
q) so

that

∥Tr(R(z; Q)A)− Tr(M11 A)∥q ≤ Cq

(
n1/q∥A∥HS + n4/q−1/2

)
.

The Hilbert–Schmidt norm control
on A is the easiest. We would ideally
trade this for n−1/2∥A∥∗. Another
direction of improvement is to dig
into the dependence on Im z, which
should almost be replaced by ϱ(z), as
in Lemma 18. As the support of the
eigenvalues of the random matrix can
be on all of R, this can only be true in a
high-probability sense or alternatively
allowing for error terms of the form of
(n| Im z|).

We need a lower bound on {1 + ai} and 1 + tn to be get started, as
these appear in the denominator.29.

29 Note that for the deformed MP law,
these are well-behaved, but to get
started in comparing the random resol-
vent to this deterministic equivalent, we
first need some a priori control

Lemma 19 (Safe denominator): Suppose Σ, Q ⪰ 0. Then with
τ = Tr(R(z; Q)Σ)

|1 + τ| = |1 + Tr(R(z; Q)Σ)| ≥ | Im z|
|z| ,

and if Re z ≤ 0, |1 + τ| ≥ 1.

Proof. Taking the real and imaginary parts of this quadratic form, we
get

x := Re Tr(R(z; Q)Σ) =
1
2

Tr((R(z; Q) + R(z; Q))Σ).

Diagonalizing Q with eigenvalues λj and eigenvectors uj

1
2

Tr((R(z; Q) + R(z; Q))Σ) = ∑
j

(λj − Re z)⟨u⊗2
j , Σ⟩

|λj − z|2 .

We can do the same with the imaginary part, which produces

y := Im Tr(R(z; Q)Σ) = ∑
j

(Im z)⟨u⊗2
j , Σ⟩

|λj − z|2 .

So we note that the real part cannot be too negative:

(Re Tr(R(z; Q)Σ))− ≤ Re z
Im z

Im Tr(R(z; Q)Σ).
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Now if Re z < 0, we have x ≥ 0 and |1 + τ| ≥ 1. Similarly if x < −2,
then we get the same bound. Otherwise we have x ∈ (−2, 0) and we
have −x < Re z

Im z y, and so

(1 + x)2 + y2 ≥ (1 + x)2 +

(
Im z
Re z

)2
x2.

This parabola we can minimize in x; its vertex is always in (−1, 0),
and so by explicit computation, we get for x < 0

(1 + x)2 + y2 ≥ (Im z)2

(Re z)2 + (Im z)2 .

Now we return to the proof of the deformed MP law.

Proof. We will control both 1
n Tr(ξ22) and generalized entries of ξ11

with high probability. In light of (42) and (43), this problem reduces
to bounding generalized entries of α2 and α1. Note that we can ap-
ply Lemma 19 can be applied to 1 + tn as well as 1 + ai. We can
also bound mn deterministically by |z|/| Im z| and |1 + tn| above by
Tr(Σ)

n
1

| Im z| .
For a generalized entry of α1, even if we make no attempt at can-

cellation in the sum, we have

|Tr(α1 A)| ≤ |z|
| Im z| max

i

∣∣∣⟨Xi ⊗ Xi − Σ, R(z; Q[i])A⟩
∣∣∣ .

Hence for any t ≥ 1 and any q ≥ 1, conditioning on Q[i],

Pr[i]( | Im z|
|z| |Tr(α1 A)| ≥ t) ≤

n maxi E

∣∣∣⟨Xi ⊗ Xi − Σ, R(z; Q[i])A⟩
∣∣∣q

tq

≤
nCq

q∥AR(z; Q[i])∥q
HS

tq .

Integrating, against tq−2 over [1, ∞] we conclude

E[i]

(
| Im z|2

|z|Cq∥AR(z; Q[i])∥HS
|Tr(α1 A)|

)q−1

≤ (q − 1)(1 + n).

Adusting constants, we have

∥Tr(α1 A)∥q ≤ Cqn1/q |z|
| Im z|2 ∥A∥HS.

Turning to α2 we divide it into three parts (cf (40)) which are given
by

α′2 = R(z; Q)
n

∑
i=1

1
n

(
1

1 + ai
− 1

1 + Tr(R(z; Q[i])Σ)

)
α′′2 = R(z; Q)

n

∑
i=1

1
n

(
1

1 + Tr(R(z; Q[i])Σ)
− 1

1 + tn(z)

)
α′′′2 =

1
n2

n

∑
i=1

((Q[i] − z Id)−1Xi)⊗ ((Q[i] − z Id)−1Xi)

(1 + ai)2
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For the last part,

|Tr(α′′′2 A)| ≤ |z|2
| Im z|2

1
n

max
i

|⟨(R(z; Q[i])Xi)
⊗2, A⟩|.

Each of these quadratic forms can be bounded in moments. Moreover
taking the Hölder norm on both sides, for any q ≥ 1

∥Tr(α′′′2 A)∥q ≤ |z|2
| Im z|4

1
n
(
∥A∥∗∥Σ∥op + Cq∥A∥HS

)
.

The α′2 terms, the ai are quadratic forms that nearly concentrate,
and so it can be bounded the same way as α1, albeit with an extra
factor of |z|/| Im z|2 accounting for the resolvent of Q and the addi-
tional (1 + ai) terms in the denominator. For the α′′2 terms, we note

Tr((R(z; Q[i])− R(z; Q))Σ)

can be expressed using the Woodbury identity, which produces a
term that is bounded the same way as α′′′2 .

We conclude that for any q and for a sufficiently large Cq depend-
ing on ∥Σ∥op, 1

| Im z| and |z|

∥ 1
n Tr(ξ22)∥q ≤ Cqn1/q−1/2 and ∥Tr(ξ11 A)∥q ≤ Cqn1/q(n−1/2 + ∥A∥HS).

Finally we use the stability Lemma 18 to bound the difference

∆ := |Tr(R(z; Q)A)− Tr(M11 A)|

for A with small ∥A∥HS. We note that when

C(nψ∗ + 1)Ξ ≥ 1,

the stability gives nothing. However this event will have probability
smaller than any power of n, and moreover we can simply bound ∆
by ∥A∥∗ ≤

√
n∥A∥HS. As for nψ∗, these are generalized entries with

test matrices of rank 1 and operator norm 1. Hence for some constant
Cq (using the same tail bounds developed above)

∥nψ∗∥q ≤ Cqn2/q.

Hence for some constant (with the same dependencies as in Lemma
18)

∥Ξ∥q ≤ Cq

(
n2/q+1ϵ + ϵ−2/qn1/q−1/2

)
.

Taking ϵ = n3/2 we conclude

∥Ξ∥q ≤ Cqn4/q−1/2,

and hence

∥Tr(R(z; Q)A)− Tr(M11 A)∥q ≤ Cq

(
n1/q∥A∥HS + n4/q−1/2

)
.



Random matrix theory of high-dimensional optimization Lecture Notes | 68

2.6 Example: Spike models
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2.7 Example: Power-law spectrum
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2.8 Example: The conjugate kernel
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3 SGD and optimization theory

SGD (stochastic gradient descent) 30 has raised to prominence as a 30 It has been argued that the “descent”
should be dropped from the name of
this algorithm, owing to the fact that
the algorithm need not always descend
(and hence does not fit into the larger
class of descent algorithms) [BCN18a].

multipurpose, simple algorithm for the optimization of many ran-
dom functions. There are probably lots of reasons for its success,
first and foremost being that it is a gradient-based algorithm; gra-
dients, especially in high-dimensions are hugely important in that
the optimal search directions tend to evade any fixed choices. 31 An- 31 One may wonder about why does

one only use gradients? Higher-order
optimization that takes advantage of
Hessian information can be faster,
but the computational costs of even
computing the Hessian (or of approx-
imating it) grow with dimension. See
the discussion in [Bot10].

other reason for its success, or more precisely the success of a larger
umbrella of stochastic gradient methods, is that the algorithm is
quite extensible: minibatch SGD, momentum SGD [Sut+13], Adagrad
[DHS11], RMSProp [HSS12], and most prominently Adam [KB14] all
extend SGD by fusing it with other optimization techniques. This list
covers the lion’s share of optimization algorithms used for machine
learning as of today.

To introduce SGD, we will consider the finite-sum framework. This
is an example of a structure32 we impose on the objective function f 32 Structure, in the context of optimiza-

tion theory, is the set of assumptions
one puts on the objective function f
which allows it to be meaningfully
manipulated or optimized. Standard
examples include convexity or smooth-
ness.

to be optimized.

Definition 32 (Finite sum): An optimization problem is finite sum
if its objective function f can be given by

min
x∈Rd

{ f (x)} where f (x) :=
1
n

n

∑
i=1

fi(x) x ∈ Rd. (44)

The parameter d represents the dimensionality of the parameter
space, and n represents the number of functions.

In the typical empirical risk minimization framework (discussed below),
the n would represent the cardinality of the training data-set and
each fi would represent the risk associated to the i-th datapoint.

We shall also assume that the functions fi have amount of smooth-
ness. For exploiting any form of gradient method, we need to have a
derivative. Further, this derivative almost always needs some amount
of tameness.

Definition 33 (Lipschitz gradients): The objective function f :
Rd → R has Lipchitz gradients with constant L if ∇ f exists
and

∥∇ f (x)−∇ f (y)∥ ≤ L∥x − y∥

for all x, y ∈ Rd. For the finite sum problem, we say its sum-
mands have Lipschitz gradients if there is a constant L such
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that for all x, y ∈ Rd

∥∇ fi(x)−∇ fi(y)∥ ≤ L∥x − y∥.

Exercise 3 (Quadratic Upper Bound): Suppose that f has Lips-
chitz gradients. Show that for any x, y ∈ Rd

f (y) ≤ f (x) + ⟨∇ f (x), y − x⟩+ L
2 ∥y − x∥2

by setting g(t) = f (x + t(y − x)) and using f (y) − f (x) =∫ 1
0 g′(t)dt.

Remark 1 (A little less smooth): A sufficient condition for Lips-
chitz gradients is that f is twice differentiable with a second-
derivative matrix (Hessian matrix) bounded in norm. While
Lipschitz gradients is a little weaker than this, it is not by
much. A weaker structure which is common is just that f it-
self is Lipschitz or even α-pseudo-Lipschitz, meaning

| f (x)− f (y)| ≤ L∥x − y∥(1 + ∥x∥α + ∥y∥α).

A final very common structure to consider is convexity. Convexity
makes lots of problems simpler to analyze. So when one has convex-
ity, it is a shame not to use it. However, in contrast to smoothness
assumptions (which are essentially necessary, in some form, to being
able to run SGD), convexity is not necessary.

Definition 34 (Strong convexity): The objective function f : Rd →
R is strongly convex with constant µ > 0 if for any x, y ∈ Rd

f (y) ≥ f (x) + ⟨∇ f (x), y − x⟩+ µ
2 ∥y − x∥2.

If this holds with µ = 0, then the function is convex. If one
has the above with µ = 0 but with a strict inequality, then the
function is strictly convex.

Exercise 4 (Function value growth): Suppose that f is contin-
uously differentiable and x∗ is a stationary point of f , i.e.
∇ f (x) = 0. Show that if f is strongly convex then x∗ is a global
minimizer, and moreover for all x

f (x)− f (x∗) ≥ µ
2 ∥x − x∗∥2.

Hence x∗ is a global minimizer.
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This shows that any local minimizer
is a global minimizer, and hence the
global minimizer is unique. For strictly
convex functions, these conclusions
remain true, but we can only conclude
f (x)− f (x∗) > 0 for all x ̸= x∗.

3.1 SGD on the finite-sum

The finite-sum framework allows us to pose a very general version of
SGD:

Definition 35 (SGD): Stochastic gradient descent, with step-size
schedule γk, has the iterates

xk+1 = xk − γk∇ fik (xk),

where ik is a (usually random) choice of function. We let
(Fk : k ∈ N0) be a filtration with respect to which the sequence
{(ik, xk)} are adapated. Some of the most important examples
are given by:

1. (Random-sample/multi-pass) The ik
law
= Unif({1, 2, · · · , n})

are chosen iid.

2. (Single-shuffle) A single permutation
π : {1, 2, · · · , n} → {1, 2, · · · , n} is drawn uniformly at
random, and then we set inr+k = π(k) for all non-negative
integers r.

3. (Random-shuffle) After each epoch (33), we draw a new
permutation πr : {1, 2, · · · , n} → {1, 2, · · · , n} uniformly at
random and set inr+k = πr(k).

4. (One-pass) Here one runs the single-shuffle algorithm but
simply stops after (or before) one full pass over the dataset.

34 An epoch is one full pass over the
dataset. We will use it to mean n here,
even in the multi-pass case.

The goal of these notes is to establish the algorithmic performance
implications of choices such as these and the step-size schedule {γk}.
How large should they be chosen? In cases where there are many
solutions, which solutions are selected and how does it depend on
the choices of step-size or shuffling scheme?

Remark 2 (Minibatch SGD): A natural extension of SGD pro-
cesses multiple gradient estimates in parallel. In this case, one
forms updates

xk+1 = xk − γk ∑
i∈Bk

∇ fi(xk),

for a random subset Bk ⊆ {1, 2, · · · , n}. In practice, SGD on
the finite sum is essentially always run in batches, which can
be chosen analogously to all the methods in Definition 35. Part
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of the reason is architectural: working in batches ensures al-
lows one to perform fewer gradient queries and/or the hard-
ware itself (especially GPUs) parallelize multi-dimensional ten-
sor contraction (up to some bounds on dimensionality) to be
the same wall-clock speed as a single dot product. Hence in a
given update-loop one may want to increase the batch size to
take advantage of this.

However, from the mathematical point of view, this begs the
question if there is any difference in the behavior of the algo-
rithm as a consequence of the batch-size. Lots of work has fo-
cused on the idea of “variance reduction”, which is to say that
minibatch SGD updates are smaller-variance updates of the un-
derlying gradient.

But this intuition ignores dimensionality effects – if all the
gradient estimators are orthogonal, there is no averaging ef-
fect occuring within the sum. So there is only a ’reduction of
variance’ once the batch-size starts to exceed the effective di-
mensionality of the gradients. In many of the setups here, that
means that |Bk| needs to be proportional to d, or moreover if
|Bk|/d → 0 one reproduces small-batch limits.

In a setup where batch-size grows proportionally to dimension,
one can recover an entire theory that runs in parallel to what is
presented here. In particular one sees that there is a saturation
effect once batch is sufficiently large (first observed in [MBB18];
see also for a sharper analysis in [Lee+22] using assumptions
similar to the ones here). Proportional batch methods have also
been analyzed in [Ger+22] using similar machinery.

Remark 3 (Momentum methods): Momentum methods are an-
other direction of generalization, in which one keeps a running
average of gradient estimates and then uses this running aver-
age to update the function. This provides another axis along
which to consider the behavior of stochastic gradient methods
This was popularized in machine learning possibly by [Sut+13];
there remains a relatively healthy controversy over whether or
not momentum matters for stochastic optimization, but this
may be partly because of the precise form of the momentum
(see especially [MY18], [Kid+18] and [PP21] which give ver-
sions which appear to correctly capture some of this momen-
tum effect in small-batch settings) or because of interactions of
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batch size and momentum [BCW22] [Lee+22].

3.2 Risks

To measure the performance of SGD, it is helpful to adopt the lan-
guage of risk. This gives us a precise way of describing the algo-
rithmic performance of SGD. Suppose that we have a distribution
D on Rm × Rp, where m represents an ambient data dimensional-
ity and the second Rp represents a (p-dimensional) output or la-
bel. The basic statistical learning theory challenge is to find a func-
tion M : Rd × Rm → Rp which for a given choice of parameters
x ∈ Rd and a data-point (a, b) sampled from D, minimizes a loss
ℓ : Rd × Rp × Rp → [0, ∞).

Definition 36 (Statistical risk): The statistical risk (or population risk
or expected risk) is the function

P : x 7→ E(ℓ(x, M(x, a), b)) where (a, b) law
= D.

In other words, having selected our parameters x and our chosen
loss, how much do our modeling mistakes cost?

In practice, having a finite dataset, we might reserve some of these
data for the “test” dataset and keep the remainder (often the vast
majority) for the training data set. Having estimated the parameters
x ∈ Rd, we could measure how well we did by statistically estimating
P using the test data set. For the estimation of the parameters x, we
use instead:

Definition 37 (Empirical risk): The empirical risk (or training loss)
for n samples (ai, bi)

n
i=1 drawn iid from D is

L : x 7→ 1
n

n

∑
i=1

(ℓ(x, M(x, ai), bi)).

Note that mathematically, this is nothing but the statistical risk,
but with the distribution D replaced by the empirical distribution of
samples. Moreover, this leads naturally to the empirical risk mini-
mization problem:

Definition 38 (Empirical risk minimization): The empirical risk min-
imization problem for n samples (ai, bi)

n
i=1 drawn iid from D
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and model M is the finite-sum problem

min
x∈Rd

{
L (x) =

1
n

n

∑
i=1

ℓ(x, M(x, ai), bi)

}
.

To make this concrete, we illustrate a few canonical examples.

Example 7: Linear regression

The most important, basic example is 1-dimensional linear re-
gression (i.e. p = 1). Here we take the model M to just be a
linear function, so that M(x, a) := ⟨x, a⟩ and so the parameter
dimensionality d matches the data dimensionality m. Fur-
ther, we suppose the data-distribution D comes from a linear
model, which is to say that

b = ⟨a, β⟩+ ϵ

for a ground truth β ∈ Rd; a noise random variable ϵ which
is independent of a, mean 0, finite variance; and a random

vector a from some distribution on Rd. Often, we take a law
=

Normal(0, Σ) for a d × d covariance matrix Σ.

The conventional loss to take in this setting is the mean-
squared error, so that ℓ(x, a, b) = 1

2 (b − a)2. In this case, we
have the following explicit formula for the population risk

R(x) = 1
2 E(ϵ + ⟨a, β⟩ − ⟨a, x⟩)2 = 1

2 Eϵ2 + 1
2 ⟨β − x, Σ(β − x)⟩.

(45)
Note that when Σ ≻ 0, this has a unique minimizer at β = x,
and moreover the loss is strictly convex.

The empirical risk also can also be represented simply. Sup-
pose we have n data-target pairs (ai, bi) for 1 ≤ i ≤ n. If we
let A be a matrix whose n rows are given by {ai} and b be
the column vector of {bi} then

L (x) = 1
2n

n

∑
i=1

(⟨ai, x⟩ − bi)
2 = 1

2n∥Ax − b∥2. (46)

Example 8: Ridge regression and penalties

A small generalization of this problem is to add a regularizer,
or effectively to modify the loss to penalize large weights.
The ℓ2–regularized loss is ℓ(x, a, b) = 1

2 ((b − a)2 + λ∥x∥2).
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This makes the empirical risk

L (x) = 1
2n∥Ax − b∥2 + λ

2 ∥x∥2. (47)

It should be noted that in context, one may wish to consider
either the regularized population risk, or alternatively the un-
regularized population risk (45).

For any positive λ > 0, the empirical risk has a unique min-
imizer, as a consequence of the strong convexity of L . The
minimizer of the regularized empirical risk always exists, and
is called the ridge estimator.

Other penalty terms may also be added; especially, adding a
∥x∥1–norm penalty leads to (one form of) the Lasso problem.

Exercise 5 (Ridge regression): how that the ℓ2–regularized
risk L is strongly convex (with constant λ) (and therefore
∇L (X) = 0 is uniquely solvable) and find its solution.

Example 9: Generalized linear models

One step more complicated than the linear models are gener-
alized linear models (GLMs). With p = 1, one supposes the
model M is a composition of a linear model and a nonlinear-
ity; so

M(x, a) := ϕ(⟨x, a⟩).

Two notable cases are that of phase retrieval, in which case

ϕ(x) = |x|. (48)

This is one of the simplest nonconvex problems that can be
formulated in high dimensions.

Another is binary logistic regression in which case

ϕ(x) =
ex

1 + ex . (49)

In this case, the model M(x, a) gains the extra interpretation
as a probability. In particular, it may represent the probability
that a data-point a has membership in some class, and so this
is well-suited to a classification problem.

The data distribution D might be many things, but one natu-
ral choice is that the data follows the model we are trying to
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fit. If we do so, then the data distribution D are assumed to
be given by

b = ϕ(⟨a, β⟩),

where a follows some distribution. Noise may also be added,
but the precise location of the noise in the model differs from
case to case.

In the case of binary logistic regression, one may instead sup-
pose that

b = X · χ + (1 − χ)1⟨a,β⟩>0,

where χ
law
= Bernoulli(ϵ) and X law

= Bernoulli( 1
2 ) are indepen-

dent of a. This represents a data distribution in which class
membership is given, but with some amount of mislabeling
error.

Finally for the losses, it is common with phase retrieval to
simply choose the mean-squared error. If one takes this,
without regularization and without noise, then

P(x) := 1
2 E(|⟨a, x⟩| − |⟨a, β⟩|)2 (50)

In some cases (especially the case of Gaussian a), it is possi-
ble to produce explicit expressions for the risk P , but gener-
ally this is impossible. For logistic regression, it is common
to use the KL–divergence

ℓ(x, M, b) = b log( b
M ) + (1 − b) log( 1−b

1−M )

or the closely related cross-entropy loss. (35)
36 The cross-entropy differs from the
KL–divergence by addition of the
entropy b log b + (1 − b) log(1 − b).
This additional term does not affect
the gradients of the loss with respect to
M, and hence it induces the same SGD
dynamics.

Example 10: Generalized linear models II

Generalized linear models also naturally can take p > 1.
This allows natural generalizations of the Example 9 such as
multiclass logistic regression, for classifying multiple classes.
Here we now suppose x is a 2-tensor, living in Rm ⊗ Rp.
The inner product Rm ∋ a 7→ ⟨x, a⟩m contracts the m-
dimensional part of x with that of a. (See partial contrac-
tions (6)). A generalized linear model is now one in which
for some g : Rp → R, M(x, a) = g(⟨x, a⟩).

For a concrete example, we introduce multi-class logistic re-
gression. For functions ϕ : R → R we extend them functions
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from Rp → R by applying ϕ coordinate-wise. The model is
given by:

M(x, a) :=
e⟨x,a⟩m

⟨e⟨x,a⟩m , 1⟩
, (51)

where 1 is the all-1 vector. We may assume the data distribu-
tion D is given as (a, b) where b is a one-hot (37)class vector
and a is an element of Rm. For the loss, one may take once
more the KL–divergence

ℓ(x, a, b) =
p

∑
i=1

bi log bi
ai

.

38 The one-hot representation of a class
is the vector of all 0 save for in the entry
given by the class, in which it is one.

Example 11: The two layer neural network

Neural networks generalize Example 10 further by effectively
composing generalized linear models. The multilayer per-
ceptron or MLP is the simplest example of this, and can be
considered as compositions, in a sense, of generalized linear
models. In a two-layer neural network (or one-hidden layer neural
network), one composes two of these. In the notation of Ex-
ample 10, if we set (see 39)

N(x, a) := (⟨x, a⟩)+

where x is an Rm ⊗ Rh–dimensional parameter tensor (and so
the output is Rh–dimensional) then with M as in (51),

(Rm ⊗ Rh)× (Rh ⊗ Rp)× Rm ∋ ((x1, x2), a) 7→ M(x2, N(x1, a))

is a relatively common construction of a neural network used
for classification purposes. Typically, further layers and more
purpose-built layers would be added to improve the perfor-
mance (see for example [LeC+98], which was one of the first
instances of “deep learning”, and which has 6 hidden lay-
ers). Once more, one could use KL–divergence for the train-
ing purposes.

40 The function x 7→ (x)+, meaning
positive part, is the ReLU activation
function, which is a popular choice.3.3 Streaming/Online stochastic gradient descent

In the case of running streaming SGD for the problem of empirical
risk minimization, at every step k ≤ n of the algorithm, one draws a
new datapoint (ak+1, bk+1) and then performs an SGD update:
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Definition 39 (Streaming SGD): Streaming (aka online) SGD is the
algorithm with updates given by (52).

Xk+1 = Xk − γk∇Xkℓ(Xk, M(Xk, ak+1), bk+1). (52)

Thus at the n-th step, the algorithm has used precisely n data-
points, and moreover, one may naturally view n as a free parameter,
representing the number of datapoints used. This means that the al-
gorithm is adapted to the filtration (Fk : k ≥ 0) generated by the
sequence of datapoints ((ak, bk) : k ≥ 0). In the case of empirical
risk minimization, there is effectively no difference between this and
one-pass SGD, except for how the size of the data-set is discussed.

Streaming can be viewed as a form of stochastic gradient descent
for directly minimizing the population risk P . Namely commuting
expectation and the gradient, one has for streaming SGD

Xk+1 = Xk − γk∇XkP(Xk)− ξk+1,

where ξk+1 is the martingale increment

ξk+1 = γk∇Xkℓ(Xk, M(Xk, ak+1), bk+1)−E[γk∇Xkℓ(Xk, M(Xk, ak+1), bk+1) | Fk].

Remark 4 (Streaming is an idealization): While it is attractive
to consider an algorithm which directly minimizes popula-
tion risk, this is almost invariably a data-inefficient procedure.
There can be circumstances where compute time, rather than
data is the limiting feature (see the discussion in e.g. [Bot10] or
[NNS20]), in which case one may wish to use something like
streaming SGD.
Regardless, as a theoretical exercise, it is definitely true that
streaming is a simpler algorithm to mathematically understand,
owing to the underlying independence of the updates.

3.4 Classical convergence of stochastic gradient descent

One of the traditional methods of analysis of stochastic gradient
descent is as a stochastic process, establishing its almost sure conver-
gence properties. Consider a stochastic algorithm defined by

Xk+1 := Xk − γk(∇F(Xk) + ξk+1) (53)

for some random vectors ξk with E(ξk+1 | Fk) = 0. This is satisfied
by both the multi-pass and one-pass versions of SGD for the finite-
sum problem, provided all the fi have bounded first derivatives.
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Theorem 19: Mean convergence of SGD

Suppose that F ≥ 0 satisifes:

1. F has Lipschitz gradients with constant L and F is
µ-strongly convex.

2. The noise ξk+1 satisfies E(∥ξk+1∥2 | Fk) ≤ M∥∇F(Xk)∥2.

3. The step-size γ is constant and satisfies

0 < γ < 2
(1+M)L .

Then with x∗ the global minimizer of F

E(F(Xk)− F(x∗)) ≤ e−2µαk × E(F(X0)− F(x∗)),

where α = γ(1 − γ
L(1+M)

2 ).

Proof. We look at an increment under SGD. Using the Lipschitz gra-
dient property (or more precisely Exercise 3)

F(Xk+1)− F(Xk) ≤ ⟨∇F(Xk), Xk+1 − Xk⟩+ L
2 ∥Xk+1 − Xk∥2.

Substituting the definition of the iterates,

F(Xk+1)− F(Xk) ≤ −γ⟨∇F(Xk),∇F(Xk)+ ξk+1⟩+ Lγ2

2 ∥∇F(Xk)+ ξk+1∥2.

Hence if we take conditional expectations on both sides

E(F(Xk+1)− F(Xk) | Fk) ≤ −γ∥∇F(Xk)∥2 + Lγ2(1+M)
2 (∥∇F(Xk)∥2).

Hence by how the step-size is chosen

E(F(Xk+1)− F(Xk) | Fk) ≤ −α∥∇F(Xk)∥2.

Now we need the following conclusion of strong convexity: for x∗

the global minimizer 41 41 This, while not totally obvious just
follows from rearranging the definition
of Strong convexity applied to the
points x and x − 1

µ∇F(x), and then
using that F(x∗) is a global minimizer.

(F(x)− F(x∗)) ≤ 1
2µ

∥∇F(x)∥2.

Thus we conclude

E(F(Xk+1)− F(x∗) | Fk) ≤ (1 − 2αµ)E(F(Xk)− F(x∗) | Fk),

which by induction proves the theorem.

Remark 5 (Bibliographic note): This was adapted from the excel-
lent notes of [BCN18a].
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This additional randomness could also come from a lot of sources:
it may be added artificially to improve the behavior of the algorithm,
such as data augmentation strategies (see for example [SK19] for a
survey of the technique and see [HS21] for some related optimization
considerations as discussed below), but frequently it is the result of
using a computationally efficient stochastic estimator for the true
gradient (which is generally the reason for minibatch SGD).

To analyze the algorithm, a good starting point is the Taylor ex-
pansion

F(Xk+1) = F(Xk)− γk⟨∇F(Xk),∇F(Xk) + ξk+1⟩+ Rk+1. (54)

Theorem 20: Robbins-Monro convergence of SGD

1. Suppose that F ≥ 0, F has Lipschitz gradients, ∥∇F∥2 is
bounded, and E(∥ξk+1∥2 | Fk) ≤ K.

2. Suppose that F has compact sublevel sets, so that for all
t > 0, {x ∈ Rd : F(x) ≤ t} is compact.

3. Suppose that γk satisfies the Robbins-Monro condition

∞

∑
k=1

γk = ∞ and
∞

∑
k=1

γ2
k < ∞.

Let S be the set of stationary points of F, i.e. those x ∈ Rd

for which ∇F(x) = 0. Then (53) converges in that it satisfies
Xk

a.s.−−−→
k→∞

S , which is to say its distance from the set S tends

to 0.

The first assumptions give control over the errors in the Taylor
approximation. The Rk+1 carries a factor of γ2

k and so it will be abso-
lutely summable.

Exercise 6 (Convergence of R): Show that if F has Lipschitz gra-
dients, ∥∇F∥2 is bounded, and E(∥ξk+1∥2 | Fk) ≤ K. Suppose
∑∞

j=1 γ2
k < ∞, then ∑∞

k=1 Rk < ∞.

Remark 6 (Notions of convergence): The above convergence
shows that Xk converges to a stationary point, meaning a point
of S . It does not necessarily show convergence of Xk to a lo-
cal, let alone a global, minimizer. Under further hypotheses
on F, one can characterize the stationary points: most signifi-
cantly, if F is strictly convex then there is unique minimizer X∗

of the problem min F(X) and moreover it is the unique station-
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ary point.

Remark 7 (Other convergence approaches): There are many ver-
sions of convergence of SGD that are proven throughout the
literature. In [Bot98], multiple criteria are given for almost sure
convergence. See also [BCN18b] for more versions of conver-
gence in mean, more in the direction of Theorem 19.

Proof. We define the martingale Mk for k > 0 by

Mk =
k

∑
j=1

γj⟨∇F(Xj), ξ j+1⟩.

This is a martingale which satisfies

EM2
k =

k

∑
j=1

γ2
j E⟨∇F(Xj), ξ j+1⟩2

≤
k

∑
j=1

γ2
j
(
sup

x
∥∇F(x)∥2)K.

By assumption this is therefore bounded independently of k, and so
we have by martingale convergence that there is a randopm variable
M∞ almost surely finite so that

Mk
a.s.−−−→

k→∞
M∞ and sup

k
|Mk| < ∞.

From (54), this implies that

F(Xk)− F(X0) ≤ Mk +
k

∑
j=1

Rj

Then the martingale and finite variation parts are both bounded, in
that

sup
k

F(Xk) < ∞ a. s. .

We also have that

∆k :=
k

∑
j=1

−γj⟨∇F(Xj),∇F(Xj)⟩

is non-increasing, and so either it tends to −∞ or converges. If it
tends to −∞, we would contradict that F(Xk) ≥ 0, since we have

F(Xk)− F(X0) = ∆k + Mk +
k

∑
j=1

Rj,
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and the other terms are bounded. It furthermore follows that in fact
F∞ := limk→∞ F(Xk) exists almosts surely.

So we introduce the event EP := {supk F(Xk) < P} and note
that ∪∞

P=1EP has probability 1, it suffices to show that on every EP we
have ∥∇F(Xk)∥

a.s.−−−→
k→∞

0 or in other words for every ϵ > 0, P > 1

Pr(EP ∩ {∥∇F(Xk)∥2 > ϵ for infinitely many k }) = 0.

Now on the event EP, SGD remains in the set K = {x : F(x) ≤ P}
for all time, which by assumption is compact. So we may work inside
of K with the subspace topology. Recall that S is the set of stationary
points, and let Uϵ be the set {x ∈ K : ∥∇F(x)∥2 ≥ ϵ}. Then this is
disjoint from S , and by compactness of K ∩ S we can find a δ > 0
sufficiently small that the closed δ-neighborhood Vδ of Uϵ is disjoint
from S . Also by compactness there is an η > 0 so that ∥∇F(x)∥2 > η

uniformly on K ∩ S .
Now we show that Xk cannot visit Uϵ infinitely often. If we wait

long enough, the contributions of the noise Mk and the Taylor er-
ror terms Rk will be uniformly small. In particular, we can find a T
sufficiently large (and random) such that

max
k≥T

(
|Mk − MT |+

k

∑
T

Rj
)
≤ ηδ/(4∥∇F∥∞).

Likewise, if we perform a martingale decomposition of Xk, we can
write

Xk − XT =
k−1

∑
j=T

−γj(∇F(Xj) + ξ j) =:
k−1

∑
j=T

−γj∇F(Xj) + (Zk − ZT),

for a martingale (Zk : k). By martingale convergence, we can also
ensure T is long enough that maxk ∥(Zk − ZT)∥ ≤ δ/8. If τ > T is a
time at which Xk is in Uϵ, then

|Xk − Xτ | ≤
k

∑
τ+1

γj∥∇F∥∞ + δ/4.

Let σ be the first time after τ that the process leaves Vδ. Then
σ

∑
τ+1

γj∥∇F∥∞ ≥ |Xσ − Xτ | − δ/4 ≥ 3δ/4.

Now on this time window, we have

F(Xσ)− F(Xτ) ≤ −
k

∑
τ+1

γjη + ηδ/(2∥∇F∥∞) ≤ −ηδ/(4∥∇F∥∞).

Thus every time that Xk enters Uϵ, the objective function F(Xk) must
subsequently drop by a fixed amount. As F(Xk)

a.s.−→ F∞, this is
impossible, and hence we have ∥∇F(Xk)∥2 a.s.−−−→

k→∞
0 on EP. By com-

pactness of K, we also have that Xk converges to S .
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Remark 8 (ODE interpolation): Another way to argue the con-
vergence above is to show that the iterates asympototically
approximate a solution to an ordinary differential equation.
The classical Robbins and Monro argument actually uses this.
It shows that the path of the algorithm asymptotically almost
surely converges to gradient flow, d

dtX (t) = −∇F(X (t)) where
we identify Xk ≈ X (tk) with tk = ∑k

1 γj. This can only true in
the sense that

lim
k→∞

max
n≥k

∥Xn −X (k)(tn)∥ = 0

where X (k) is gradient flow with initial condition X (k)(tk) =

Xk.
Refinements of this argument further show SDE approxima-
tions, for Xn −X (k)(tn). See [KY06].

Exercise 7 (Recurrence to Convergence): Suppose that F ≥ 0 but
that ∇F and ∇2F are only continuous (instead of bounded).
Suppose however that with γk satisfying the Robbins-Monro
condition, the process Xk returns infinitely often to some com-
pact set K, with probability 1. Show that F converges to a sta-
tionary point of S ∩ K.

3.5 The pessimism of almost sure convergence

The good part about the Robbins-Monro type condition on {γk} in
Theorem 20 is that it does not depend at all on the problem – one
is guaranteed convergence with decreasing step-sizes such as γk =

1/k. But convergence is an asymptotic statement, and practically
speaking, one must decide at which finite time to stop the algorithm.
So rates of convergence, which necessarily depend on the problem
setup, are important.

Furthermore, in high-dimensional settings such as those displayed
in Figures 1, it is important to account for the magnitude of the gra-
dients. Moreover, in dimension-independent terms, the additional
errors incurred from simply picking a constant step-size may be
small, as measured by the risk. On the other hand, constant step-size
SGD may not converge, as if the noise generated by SGD does not
vanish, one may have a non-degenerate stationary distribution.

The overarching goal of these notes are to develop the mathemat-
ics behind the figures presented here, and in particular to formulate
an algorithmic analysis which is accurate in high dimensions.
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Figure 1: Linear regression (see
Example 7). Constant step-size
SGD with step-size within a
factor of 3 of the largest sta-
ble step-size. Fixed dimension
d = 2000, identity data covari-
ance. Increasing numbers of
samples, with multipass SGD.
Streaming is the “infinite data”
version.
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Figure 2: Linear regression (see
Example 7). Same setup as Fig-
ure 1 with one additional curve,
the Robbins-Monro stepsize
γk = 1/k. By Theorem 20, the
black curve converges. Rescal-
ing the step-size (for example
dividing by d) gives a curve
which is effectively constant
over the same time-scale.



Random matrix theory of high-dimensional optimization Lecture Notes | 87

4 High-dimensional limits: streaming SGD in the case au-
tonomous order parameters

In the previous section, we saw an example of a simple high-
dimensional (high measured in the thousands) linear regression
problem where the Robbins-Monro step-size schedule performed
poorly and a constant step-size performed better. The Robbins-
Monro schedule paid no heed to the underlying problem parameters,
and indeed for a fair comparison one could add problem dependent
constants (for example see [KNS16]). However, in the example given,
the unavoidable conclusion is the step-size is just too slow, and one
possible explanation is that the strategy paid no attention to the di-
mensionality of the problem.

To conceptualize what it means for the dimension to be large,
however, we need to change the dimension and understand its ef-
fects. Doing this reveals some important lessons: The most significant
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SGD iterations/d
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d = 1600
d = 6400
Theory

Figure 3: Population risk of
logistic regression (see Example
9). In each dimension, 10 runs
of streaming SGD for logistic
regression are performed. We
then display 80% confidence
intervals over time (i.e. we dis-
card the largest and smallest
at error at each point in time).
The curves concentrate around
a high-dimensional limit value.
Note that time is scaled by di-
mension. In the isotropic case,
this risk curve follows an au-
tonomous ODE. (This in fact is
non-isotropic, for which there
is a Volterra curve, similar to
those discussed in the next
section.)

observation is that the risk curve concentrates around a dimension-
independent limit. Moreover, this curve depends in a nontrivial way
on the stepsize.

In other words, there is some dynamical system hiding in plain
sight, such that on sending dimension to infinity, the risks are de-
scribed by this dynamical system. We begin by illustrating this with a
simple example.



Random matrix theory of high-dimensional optimization Lecture Notes | 88

Example 12: Isotropic Gaussian Linear Regression

We follow Example 7, and run streaming SGD on it. We sup-
pose the data distribution D is such that (a, b) ∼ D means

a law
= N(0, Id), ϵ

law
= N(0, η2 Id), b = ⟨a, β⟩+ ϵ,

where β = β will be a vector in Rd of norm 1. The loss is
ℓ(x, u, v) = 1

2 (u − v)2 and the risk P is given by

P(x) = 1
2 (η

2 + ∥β − x∥2).

Streaming SGD on this problem is given by

xk+1 = xk − γk(⟨xk − β, ak+1⟩ − ϵk+1)ak+1.

Now to perform an analysis of this, we will look for a way to de-
scribe the limit as dimension tends to infinity of the risk of SGD over
time. The good starting point for this type of analysis is to compute
the evolution in time of the expected risk of SGD. It will turn out to
be enough to compute the mean and covariance matrix of the up-
dates SGD.

Remark 9 (Tensor formalism): It will be helpful when working
with high-dimensional limits to use tensor representations, as
even for algorithms which only involve matrix-vector products,
one is forced to consider higher tensors. We can naturally iden-
tify matrices M = Mi,j with 2-tensors (see Section 1.1). The
covariance matrix of a random vector a is then identified with

Ea ⊗ a.

The norm-squared of a vector x can be alternatively repre-
sented, using the contraction operator as

∥x∥2 = ⟨x, x⟩ = ⟨x ⊗ x, Id⟩ = Tr(x ⊗ x).

A quadratic form of x and a matrix A can be represented by

xt Ax = Tr(AxxT) = ⟨A, x ⊗ x⟩.

Example 13: Dynamical analysis of Isotropic Gaussian Linear Regres-

sion

Let Fk be the σ-algebra generated by ((aj, bj) : 0 ≤ j ≤ k).
The conditional mean and conditional variance of this update
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are given by

E[(⟨xk − β, ak+1⟩ − ϵk+1)ak+1 | Fk] = xk − β = ∇P(xk),

and the covariance matrix (see Exercise 9 below) is given by

E[(⟨xk − β, ak+1⟩ − ϵk+1)
2ak+1 ⊗ ak+1 | Fk]

=
(
E[(⟨xk − β, ak+1⟩)2 | Fk] + η2) Id+2((xk − β)⊗ (xk − β))

= 2P(xk) Id+2((xk − β)⊗ (xk − β)).

It will turn out the correct way to view this in high-
dimensions is as a principal term (the first one) and a lower
order correction, i.e.

E[(⟨xk − β, ak+1⟩ − ϵk+1)
2ak+1 ⊗ ak+1 | Fk] ≈ 2P(xk) Id .

Suppose that we consider the evolution of the risk itself un-
der SGD, which is to say we consider the update

P(xk+1)−P(xk) =
1
2 (∥xk+1 − xk∥2 + 2⟨xk+1 − xk, xk − β⟩).

If we set R(x) := 1
2∥β − x∥2, then computing the conditional

expectation, we arrive at

E[R(xk+1)−R(xk) | Fk]

=
γ2

k
2 Tr

(
2P(xk) Id+2((xk − β)⊗ (xk − β))

)
− γk⟨xk − β, xk − β⟩
= −2γkR(xk) + γ2

k(dR(xk) + dη2/2 +R(xk)).

The major factor to consider in this recurrence is the d which
appears in the γ2

k term.

For both first and second order terms to survive in a limit,
we must take γk ≍ γ2

k d (meaning as order of magnitudes
in d), which implies that γk ≍ 1/d. Moreover to achieve a
non-degenerate limit, we should set γk = γ(k/d)/d for a
continuous function γ(·). If we set ρ(t) = limd→∞ E[R(x[td])]
then the above equation becomes an Euler approximation for
the ordinary differential equation

ρ̇ = −2γ(t)ρ + γ2(t)(ρ + η2/2).
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Remark 10 (Risk curve and stability): This can be solved explic-
itly. In the case of η ≡ 0, it is

ρ(t) = ρ(0) exp
(
−
∫ t

0
(2γ(s)− γ2(s)) ds

)
.

Note that for constant γ(t) ≡ γ, the curve is convergent if and
only if γ < 2 and bounded if and only if γ ≤ 2, (which can also
be reasoned just from the ODE). Note further the risk tends
to 0. In the case η > 0 and constant γ < 2 the risk does not
tend to 0, but we can further solve for the limiting risk as the
stationary point of ρ by setting ρ̇ = 0:

ρ(∞) =
γ2η2

4γ − 2γ2 .

Exercise 8 (Concentration): Show using martingale concentration
that the difference of R(x[td]) and ER(x[td]) tends to 0 in prob-
ability as d → ∞ for any fixed t > 0.

Exercise 9 (Wick rule computations): The Wick rule gives a quick
way to compute expectations of tensors formed from Gaus-

sians. Suppose a law
= N(0, K). For a simple tensors fi for

1 ≤ i ≤ 4,
E⟨a⊗4, f1 ⊗ f2 ⊗ f3 ⊗ f4⟩
= ⟨K, f1 ⊗ f2⟩⟨K, f3 ⊗ f4⟩
+ ⟨K, f1 ⊗ f3⟩⟨K, f2 ⊗ f4⟩
+ ⟨K, f1 ⊗ f4⟩⟨K, f2 ⊗ f3⟩.

This extends by multilinearity to 4-tensors B by

E⟨a⊗4, B⟩
= ⟨K, ⟨K, B⟩1,2⟩3,4

+ ⟨K, ⟨K, B⟩1,3⟩2,4

+ ⟨K, ⟨K, B⟩1,4⟩2,3,

where ⟨·, ·⟩a,b refers to contracation along axes a and b. Show
that

E(⟨a, y⟩2⟨a⊗2, Idm⟩)
= E⟨a⊗4, y ⊗ y ⊗ Idm⟩
= ⟨K, y ⊗ y⟩⟨K, Idm⟩+ 2⟨⟨K, y⟩ ⊗ ⟨K, y⟩, Idm⟩
= ytKy Tr(K) + 2ytK2y.
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4.1 Hidden finite dimensional risk manifold

The key to the previous example (Example 12) was that the equation
for the dynamics of the risk was autonomous: the evolution of the
risk depends only on the current value of the risk. This generalizes
the situation seen in Example 13, in which the risk itself describes an
autonomous evolution.

Definition 40 (Hidden risk manifold): Say that family of empirical
risk minimization problems, indexed by model dimensionality
d, lie on a hidden risk manifold of dimension k if for any d there
are C2 functions u(d) : Rd → Rk and F1, F2 : Rk → Rk with:

1. u(d)
1 (x) = P(x) and P is uniformly coercive:

lim
∥x∥→∞

lim inf
d→∞

u(d)
1 (x) = ∞.

2. F1, F2 are locally Lipschtiz functions;

3. with γk ≡ γ/d

∥dE[u(x1)− u(x0) | F0] + γF1(u(x0))− γ2F2(u(x0))∥ → 0

uniformly on compact sets of ∥x0∥ as d → ∞ for fixed γ;

4. with γk ≡ γ/d

dE[∥u(x1)− u(x0)∥2 | F0] → 0

uniformly on compact sets of ∥x0∥ as d → ∞ for fixed γ.

Remark 11 (Origins of the hidden risk manifold): This is an adap-
tation of formulation of [BAGJ22], which contains, in addition,
some notable worked examples and further theoretical elabo-
rations. While not formalized in this way, some of the ideas of
this limit appear in the earlier in the work of [SS95]. This idea
has also appeared [Vei+22], [Arn+23], and [AGJ21].

The notion has appeared in the physics literature, where it is
described as the closure of the equations of motion for the
order parameters [Gol+20]. In situations where the data co-
variance is non-identity, this procedure usually has trouble,
[Gol+20; YO19]. In Section 5 we we show one way to handle
this.

As a first central example, the Isotropic Gaussian satisfies these
assumptions.
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Example 14: Isotropic Gaussians satisfy HRM

We only need a single observable:

u(x) = P(x) = 1
2∥β − x∥2 + 1

2 η2.

This risk is clearly uniformly coercive. The computations
in Example 13 show that these ERMs satisfy Part 2 and 3 of
Definition 40 with

F1(u) = 2u − η2 and F2(u) = u.

Finally it can be checked that for some constant C(∥x0∥)

E[∥u(x1)− u(x0)∥2 | F0] ≤ C(∥x0∥)γ2/d2.

Theorem 21: Hidden risk manifold

Suppose a family of empirical risk minimization problems
have a hidden risk manifold and {x(d)k } is streaming SGD on
these problems. Suppose the initialization satisfies u(x0) →
µ0 as d → ∞. Let µ be the solution of the initial value prob-
lem on Rk

µ̇ = −γF1(µ) + γ2F2(µ), µ(0) = µ0.

Suppose that the solution of this IVP exists for all time. Uni-
formly on compact sets of t

u(x[td])
Pr−−−→

d→∞
µ(t).

Proof. Fix an R > 0 and let τR be the first time k the norm of xk

exceeds R in norm, i.e.

τR = inf{k : ∥u(xk)∥ > R}.

It suffices to show that uniformly on compact sets of time 42 42 The process xτ
k refers to the stopped

process, given by xτ
k = xk∧τ . Likewise µτ

is run to the first time t > τ at which
point it is frozen.

u(xτR
[td])

Pr−−−→
d→∞

µσR(t),

where σR is the first time t that ∥µ(t)∥ > R. Having shown this, and
since σR → ∞ as R → ∞, it follows that τR → ∞ in probability as
d → ∞ followed by R, i.e. for any M

lim
R→∞

lim sup
d→∞

Pr(τR ≤ M) = 0.

Thus, we will have shown the claimed convergence of u to µ without
stopping.
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Now for a given R from the Part 1 of Definition 40 that P is uni-
formly coercive, we have that there is an M sufficiently for all d suffi-
ciently large ∥xτR

k ∥ ≤ M for all k < τR. From Part 4 of Definition 40,
we have that ∥xτR

k ∥ ≤ M + 1 even at the final time (where the process
xk can jump outside the ball, but by the moment bound given can
only jump a little with probability going to 1) with probability going
to 1 as d → ∞. For any t, we perform a Doob decomposition of u up
to time ℓ ≤ [td], which gives

u(xℓ) = u(x0) +
ℓ−1

∑
k=0

E[u(xk+1)− u(xk) | Fk] + Mℓ.

From Part 4 of Definition 40, we have from Doob’s inequality and
Doob’s L2–maximal inequality

max
0≤k≤ℓ

∥Mk∥
Pr−−−→

d→∞
0.

Hence From Part 3 of Definition 40

max
0≤ℓ≤td

∥−u(xℓ)+u(x0)+
1
d

ℓ−1

∑
k=0

{
−γF1(u(xk))+γ2F2(u(xk))

}
∥ Pr−−−→

d→∞
0.

This is now a uniform approximation of the IVP in the statement of
the theorem. The theorem follows from Gronwall’s inequality and
Part 2 of Definition 40.

Example 15: GLMs with isotropic features

We suppose that we have GLM (Example 9) in a student-
teacher format. That is, suppose that we have have M(x, a) =
ϕ(⟨x, a⟩) and suppose β ∈ Rd is given and has unit norm.
Suppose we have a data distribution D on Rd × R where
(a, b) ∼ D means

b = M(β, a) and a law
= N(0, Idd).

Now we suppose the loss ℓ(x, u, v) = ℓ(u, v) is given and is
C1 with derivative bounded uniformly in norm.

The population risk is given by

P(x) := Eℓ(M(x, a), M(β, a)),

and constant step-size streaming SGD is given by

xk+1 = xk − γ
d ∇xℓ(M(xk, ak+1), M(β, ak+1))

= xk − γ
d ak+1ϕ′(⟨xk, ak+1⟩)ℓu(ϕ(⟨xk, ak+1⟩), ϕ(⟨β, ak+1⟩)).

We observe that

∇xP(x) = E∇xℓ(M(x, a), M(β, a)).
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This is an expectation over a two-dimensional Gaussian dis-
tribution (⟨x, a⟩, ⟨β, a⟩). Thus, this can be computed from two
covariances

⟨x, β⟩ = E(⟨x, a⟩⟨β, a⟩) and ⟨x, x⟩ = E(⟨x, a⟩⟨x, a⟩).

Now under suitable assumptions (P being coercive, ℓ, ϕ be-
ing sufficiently bounded), it can be verified that this pair of
observables determines the entire evolution of the system, i.e.

u(x) =
(
P(x), ⟨x, x⟩, ⟨x, β⟩

)
is a hidden risk manifold.

Exercise 10 (Smooth phase retrieval): In the case that ϕ(x) = x2

and ℓ(u, v) = 1
2 (u − v)2, find F1 and F2.

Example 16: The Saad-Solla neural network

Following [SS95], consider a setup in which for a 2-tensor
x ∈ Rm ⊗ Rp

Mp(x, a) := g(⟨x, a⟩m) where g(x) = erf(x/
√

2)

and suppose one considers the student-teacher setup in

which a law
= N(0, Idm) and mean-squared error loss ℓ(u, v) =

1
2 (u − v)2. The number of hidden units in the student and
teacher layers are different and given by p, q respectively.
Hence the risk is given by

P(x) = Eℓ(Mp(x, a), Mq(β, a)).

This can be evaluated explicitly in terms of the correlation
matrices

Q = ⟨x, x⟩m, T = ⟨β, β⟩m, R = ⟨x, β⟩m.

These correlation matrices. For a 2-tensor A ∈ V⊗2, setting
D(A) to be the vector (1/

√
1 + Aii : 1 ≤ i ≤ dim(V)),

P(x) = 1
π

(
Tr arcsin(Q ⊗ (D(Q)⊗D(Q)))

+ Tr arcsin(T ⊗ (D(T)⊗D(T)))

− 2 Tr arcsin(R ⊗ (D(Q)⊗D(T)))
)
,

with the arcsin applied entrywise. Moreover, the triple
(P , Q, T, R) form a hidden risk manifold. See [SS95] for a
qualitative discussion of the resulting ODEs.
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5 High dimensional analysis of streaming SGD on the corre-
lated least squares problem

This is adapted from the article [CP23b]. Portions adapted from [Paq+22b],
[Paq+22a], and [Paq+21].

A unifying theme of the examples in the previous section were
that (1) the data were isotropic Gaussian N(0, Idm) and (2) the risks
could be described by a family of order parameters related to correla-
tions E⟨a, x⟩m ⊗ ⟨a, x⟩m (and when relevant E⟨a, x⟩m ⊗ ⟨a, β⟩m). The
reliance on isotropic Gaussian data calls into question to what extent
this theory could ever apply to more involved setups. So we may
wish to generalize it, which brings us to point (2): if we look at the
case of correlated data, are there still hidden variables which describe
the evolution of risk?

Example 17: Nonisotropic linear regression requires unboundedly

many statistics

We now suppose the data distribution D is such that (a, b) ∼
D means

a law
= N(0, K), ϵ

law
= N(0, η2 Id), b = ⟨a, β⟩+ ϵ,

where β = β will be a vector in Rd of norm 1. The loss is
ℓ(x, u, v) = 1

2 (u − v)2 and the risk P is given by

P(x) = 1
2 (η

2 + ⟨K, (β − x)⊗2⟩).

The risk now satisfies a 1-step update given by

E[P(xk+1)−P(xk) | Fk]

=
γ2

k
2 Tr

(
2P(xk)K + 2(K(xk − β)⊗ K(xk − β))

)
− γk⟨K2, (xk − β)⊗2⟩

Now, unfortunately, the gradient descent term (meaning
that which is linear in γk is no longer just the risk P , ow-
ing to the presence of the K2. One may attempt to add
u2(x) := ⟨K2, (xk − β)⊗2⟩), but when considering its evo-
lution under SGD, this just leads to a gradient descent term
⟨K3, (xk − β)⊗2⟩. So there is not a finite family of statistics
that can be used to autonomously describe the evolution.

So we need another framework for describing the high-
dimensional limit dynamics, beyond what has already been pre-
sented. We shall put the following assumptions on the data. (See
Section 1.6).
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Assumption 1 (Data assumptions): A sample (a, b) from the dis-
tribution D satisfies the following:

1. That data a is centered and has covariance matrix
K := Ea ⊗ a which has operator-norm bounded independent
of d.

2. The data satisfies a Hanson-Wright type inequality: for all
t ≥ 0 and for any deterministic matrix B

Pr
(∣∣∣aT Ba − EaT Ba

∣∣∣ ≥ t
)
≤ 2 exp

(
−min

{
t2d−4ε

∥B∥2 ,
td−2ε

∥B∥σ

})
.

3. Conditionally on a, the distribution of b is given by
⟨a, β⟩+ ηw where w is mean 0, variance 1 and is subgaussian
with ∥w∥ψ2 ≤ dε.

4. The ground truth β is assumed to have norm at most dε.

Throughout this section we shall only discuss streaming SGD for
the least squares problem with constant step-size γk ≡ γ/d. Hence
the the iterates are given, in terms of a stream of data (aj, bj)

∞
1 , by

xk − β = (Idd − γ
d akaT

k )(xk−1 − β) + γ
d ηwkak, (55)

where (wj)
∞
1 are the standardized noises in the targets.

Homogenized SGD for streaming linear regression. To accomplish this
task, we introduce an idealized process which captures the large-
dimensional behvior. Homogenized SGD is defined to be a contin-
uous time process with initial condition X0 = x0 that solves the
stochastic differential equation

dXt = −γ∇P(Xt)dt + γ
√

2
dP(Xt)K dBt (56)

where Bt is standard Brownian motion in dimension d, where we
rcall P is the population risk:

P(x) := 1
2 E(a,b)(⟨a, x⟩ − b)2, (a, b) ∼ D. (57)

We will formulate a comparison theorem between Xt and xk. To do
so, we use the following probabilistic notion:

Definition 41 (Overwhelming probability): We use the probabilis-
tic modifier with overwhelming probability to mean a statement
holds except on an event of probability at most e−ω(log d) where
ω(log d) tends to ∞ faster than log d as d → ∞.
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To quantify the growth of functions, we use the following:

Definition 42 (C2 norm): Define ∥ · ∥C2 on functions q : Rd → C

∥q∥C2 := sup
x

∥∇2q(x)∥σ + ∥∇q(0)∥+ |q(0)|,

with the norms on the right hand side being given by the oper-
ator and Euclidean norm respectively.

Our main theorem is given by the following:

Theorem 22: Streaming SGD limit

Suppose the data satisfies Assumption 1. For any quadratic
q : Rd → R, and for any deterministic initialization x0

with ∥x0∥ ≤ 1, there is a constant C (∥K∥σ) so that the
processes {xk}n

k=0 and {Xt}n/d
t=0 satisfy for any n satisfying

n ≤ d log d/C(∥K∥σ)

sup
0≤k≤n

∣∣∣q(xk)− q(Xk/d)
∣∣∣ < ∥q∥C2 · eC(∥K∥σ)

n
d · d−

1
2+9ε (58)

with overwhelming probability.

The processes xk and Xt are independent, and hence this is also a
statement about concentration. In particular, the statement is also
true if we replace q(Xk/d) by Eq(Xk/d).

5.1 Explicit risk curves

Unlike results from the previous section, this is not quite a com-
plete solution to describing the limiting risk curves in the high-
dimensional limit. Indeed, this process still exists in a d-dimensional
space and not in a space of dimension independent of d. So to find
the risk curves, we still have an argument to do.

The main idea we use here is to consider the complex curve, with
R(z; K) given by the resolvent (see Section 1.2 for a discussion of
resolvent properties that we use)

Qt(z) := 1
2 ⟨R(z; K), (Xt − β)⊗ (Xt − β)⟩ z ∈ C. (59)

It will suffice to consider Qt(z) on a curve Γ ⊂ C that encloses the
spectrum of K. As we have supposed that K has an operator norm
independent of d, we can suppose that this curve is independent of d
and encloses a 1-neighborhood of all eigenvalues of K.

Now from Cauchy’s integral formula (see the spectral mapping
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theorem), we have

P(Xt) := 1
2 ⟨K, (Xt − β)⊗ (Xt − β)⟩ = −1

2πi

∮
Γ

zQt(z)dz. (60)

Hence, the risk can be extracted from Qt(z). Now on the other hand,
applying Itô’s formula

dQt(z) = −γ⟨KR(z; K), (Xt − β)⊗ (Xt − β)⟩dt

+ γ⟨R(z; K), (Xt − β)⊗
√

2KP(Xt)
d dBt⟩

+ γ2P(Xt)
d ⟨R(z; K),

√
KdBt ⊗

√
KdBt⟩.

= −γ⟨zR(z; K) + Idd, (Xt − β)⊗ (Xt − β)⟩dt + dMt(z)

+ γ2P(Xt)
d ⟨R(z; K), K Idd⟩dt.

(61)

The process dMt(z) is the martingale term, i.e. all those terms linear
in dBt. In summary

dQt(z) = −2γzQt(z)dt+ γ2P(Xt)
d Tr(KR(z; K))dt−γ∥Xt − β∥2 dt+dMt(z).

Hence using an integrating factor, we have

d(e2γztQt(z)) = e2γzt γ2P(Xt)
d Tr(KR(z; K))dt−γe2γzt(∥Xt − β∥2 dt+dMt(z)).

This can be solved explicitly to give

Qt(z) = Q0(z)e−2γzt +
∫ t

0
e−2γz(t−s) γ2P(Xs)

d Tr(KR(z; K))ds + Et(z).

The term Et(z) is an error term containing both terms which will
vanish in subsequent steps and a martingale term which we must
show vanishes (owing to the extra factor of

√
d that it carries). From

this, we can extract the risk P(Xt) by integrating over Γ. Specifically
using (60)

P(Xt) =
−1
2πi

∮
Γ

z
(

Q0(z)e−2γzt +
∫ t

0
e−2γz(t−s) γ2P(Xs)

d Tr(KR(z; K))ds+Et(z)
)

dz.

(62)
Each of these terms we integrate separately.

Gradient flow term. For the first term, zQ0(z)e−2γzt, we can identify it
as a function of gradient flow.

Definition 43 (Gradient Flow): Gradient flow (Xt : t ≥ 0) on the
objective function P with initialization X is the solution of the
ODE

Ẋt = −∇P(Xt)

with initial state X0 = X.
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In the least-squares problem, this can be explicitly solved, which
yields:

Lemma 20 (Least squares gradient flow): If P(x) = 1
2 ⟨K, (x −

β)⊗2⟩ + η2/2 and initial state of gradient flow of SGD is X,
then

Xt − β = e−tK(X − β).

Proof. From uniqueness of the gradient flow ODE, it suffices to sim-
ply verify that

Ẋt = −K(Xt − β) = ∇P(Xt)

and that at initialization X0 = X.

From spectral mapping, we have

−1
2πi

∮
Γ

zQ0(z)e−2γzt dz =
1
2

〈
−1
2πi

∮
Γ

ze−2γztR(z; K)dz, (X0 − β)⊗2
〉

=
1
2
⟨Ke−2γKt, (X0 − β)⊗2⟩

=
1
2
⟨K, (Xγt − β)⊗2⟩.

Thus the first terms is precisely the risk of gradient flow run from
the same initialization. The noise term (which is quadratic in γ) can
again by spectral mapping can be identified, from which (62) can be
expressed as

P(Xt) = P(Xγt) +
∫ t

0
Tr(K2e−2γK(t−s)) γ2P(Xs)

d ds − 1
2πi

∮
Γ

zEt(z)dz.

Hence we introduce the Volterra model for the risk by

Definition 44 ((Finite-dimensional) Volterra risk model): Let Xt be
the path of gradient flow started from initialization X0. Let Kγ

be the function from [0, ∞) → [0, ∞) given by

Kγ(t) := γ2 Tr(K2e−2γKt)

d
.

Then the Volterra risk model is the solution of the convolution-
type Volterra equation

Ψ(t) := P(Xγt) +
∫ t

0
Kγ(t − s)Ψ(s) ds.

After establishing control on the error terms above, we will have
shown the following
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Theorem 23: Homogenized SGD risk curve

For any ε > 0, any T > 0

sup
0≤t≤T

|P(Xt)− Ψ(t)| < C(T, ∥K∥σ)d−1/2+ε

with overwhelming probability.

This is a similar Gronwall inequality argument and uses concen-
tration of Brownian martingales. See [Paq+22a, Theorem 1.1] for
details.

5.2 Optimization implications of the Volterra risk model.

From here, we can already make some optimization conclusions. We
first note that while the comparison between the true risk P(xtd) and
Ψ(t) only holds in the limit as d → ∞, the curve Ψ(t) exists at each
finite d.

The first observation is that F(γt) := P(Xγt) is always decreasing,
for all γ and moreover decreases as t → ∞. The limit risk is given by

Lemma 21 (Gradient flow risk): The risk under gradient flow con-
verges F(∞) = η2/2 and moreover converges like

F(γt) ≤ F(∞) + e−2γλ(K)t(F(0)− F(∞))

where λ(K) is the smallest positive eigenvalue of K. This is
asymptotically correct in that

(F(γt)− F(∞))1/t → e−2γλ(K).

Proof. From Lemma 20, we have the explicit integral curve Xt − β =

e−tK(X − β), with X the initialization of gradient flow. It follows that

F(γt) = 1
2 ⟨Ke−2Kγt, (X − β)⊗2⟩+ η2

2 .

On taking t → ∞ this inner product converges to 0. The rate of
convergence can be quantified in terms of the smallest positive eigen-
value of K, which is given by

(F(t)− F(∞))1/t → e−2λ(K).

We also have the non-asympototic guarantee

(F(t)− F(∞)) ≤ e−2λ(K)t(F(0)− F(∞)).
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Since the function F always is bounded, the boundedness of the
solution of the Volterra model can be stated entirely in terms of the
kernel K. One also can deduce rates of convergence, which we give in
terms of the Malthusian exponent.

Definition 45 (Malthusian exponent): For a convolution Volterra
equation, the Malthusian exponent λ∗ is given by

λ∗(Kγ) = inf
{

λ > 0 :
∫ ∞

0
e2γλtKγ(t) dt = 1

}
if it exists.

Exercise 11 (Malthusian exponent exists at finite d): In finite di-
mensions (i.e. with Kγ(t) given as in the Volterra model with
finite dimensional K), the Malthusian exponent always exists
and is always less than the smallest eigenvalue of λ(K).

Theorem 24: Volterra model optimization properties

The Volterra risk model Ψ satisfies the following.

1. The risk Ψ remains bounded if and only if γ ≤ 2 Tr K
d , and

the limiting risk Ψ(∞) = F(∞)(1 − γd
2 Tr K )

−1.

2. If for γ < 2 Tr K
d , then Ψ(t)1/t → e−2γλ∗

.

While the Malthusian exponent is always larger than λ(K), this
leaves open whether or not λ∗(K) is vanishingly close to λ(K). To
answer this, it is simplest to pass to an infinite dimensional setting.

5.3 Infinite dimensional Volterra equation

The Volterra model in Definition 44 still depends on the dimen-
sionality of the underlying problem; it also can be derived without
further modelling considerations of the covariances structure d or
initialization. It can also be advantageous to derive a true dimension-
independent limit, which for example clarifies those γ at which the
Malthusian exponent plays a dimension-independent role. To de-
rive a dimension-independent limit, it is enough to suppose that the
empirical measure of eigenvalues of K converges to a limit.
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Definition 46 (Empirical spectral measure): The empirical spectral
measure µ of K is the d-point atomic measure

µK(dx) =
1
d

d

∑
j=1

δλj(K)(dx)

where
{

λj
}

are the eigenvalues of K.

If the empirical spectral measure µK converges weakly to some
compactly supported limit measure µ, and the driving curve
F(t; d) → F(t; ∞) uniformly on compact sets of t, then uniformly
on compact sets of time

Ψ(t; d) → Ψ(t; ∞),

where the infinite-dimensional Volterra model satisfies the following.

Definition 47 (Infinite Dimensional Volterra Model): The finite di-
mensional Volterra model with gradient flow risk curve F and
spectral measure µ is the solution of

Ψ(t) = F(γt) +
∫ t

0
Kγ(t − s)Ψ(s)ds,

where
Kγ(t) = γ2

∫ ∞

0
x2e−2γxtµ(dx).

This generalizes the finite-dimensional model by taking µ to be the
empirical spectral measure of K and F given by P(Xt).

The convergence analysis Theorem 24 remains true, with
2 Tr K/d = 2

∫ ∞
0 xµ(dx). In the infinite-dimensional case, the Malthu-

sian exponent of the convolution-Volterra equation may cease to
exist. If λ(µ) is the left-edge of the support of µ, then λ∗ does not
exist for γ such that

γ

2

∫ ∞

λ(µ)

x2

x − λ(µ)
µ(x) =

∫ ∞

0
e2tγλ(µ)Kγ(t)dt < 1.

This leads to the following infinite-dimensional version of Theorem
24.

Theorem 25: Volterra limit

For a limiting spectral measure µ, the infinite dimensional
Volterra risk model Ψ satisfies:

1. The risk Ψ remains bounded if and only if
γ ≤ 2

∫ ∞
0 xµ(dx), and the limiting risk Ψ(∞) is given by
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F(∞)(1 − γ

2
∫ ∞

0 xµ(dx)
)−1.

2. If for γ < 2
∫ ∞

0 xµ(dx), the Malthusian exponent exists
then (Ψ(t)− Ψ(∞))1/t → e−2γλ∗

.

3. If for γ < 2
∫ ∞

0 xµ(dx), the Malthusian exponent does not
exist, the convergence rate (at exponential scale) is the
same as F(t).

Remark 12 (Precise rates): Under the further assumption that
µ([λ(K), λ(K) + t])t−α → c > 0 as t → 0 it is possible to
give more precise statements for the behavior of the rates (such
as Φ(t)eρttβ → c as t → ∞). Under the assumption x0 is
isotropic subgaussian, it is possible to give more precise par-
ticular asymptotic equivalences (i.e. without the 1/t exponent).

5.4 Proof sketch of the homogenized SGD comparison

We give a reduced version of the proof of Theorem 22. In effect we
show that q(xk) nearly satisfies the conclusion of Itô’s lemma. Fur-
ther, we show the martingale terms in both of the Doob decomposi-
tions are small, and hence it suffices to show the predictable parts of
q(xk) and q(Xt) are close.

To advance the discussion, we compute this Doob decomposition.
To take advantage of the simpler structure afforded by removing β,
introduce

vk := xk − β and Vt := Xt − β. (63)

We shall extend the first integer indexed function to real-valued
indices by setting vt = v⌊t⌋. We also let (Ft : t ≥ 0) be the filtration
generated by (vt : t ≥ 0) and (Vt/d : t ≥ 0). Hence for all k ∈ N, vk

is measurable with respect to Fk. Recalling the recurrence (55), for a
quadratic q

q(vk)− q(vk−1) = −γ(∇q(vk−1))
T(∆k) +

γ2

2 (∆k)
T(∇2q)(∆k),

where mk = ak/
√

d

∆k = mk(mT
k vk−1 − ηwk)

(64)

The equation above can each be decomposed as a predictable part
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Figure 4: Phase transition of
the convergence rate (y-axis)
as a function of the stepsize
(x-axis, γ) for the isotropic fea-
tures model at infinite dimen-
sions. Thus µ is Marchenko-
Pastur (depending on aspect ra-
tio r) and gradient flow is given
by an isotropic starting vector.
Smaller stepsizes (dotted) yield
convergence rates which de-
pend linearly on γ with a slope
that is always frozen on λ(µ)

– this coincides with the con-
vergence rate of the underlying
gradient flow. The convergence
rate changes behavior once it
hits the critical stepsize (solid
gray, γ∗), becoming a non-linear
function of γ (a discontinuity
occurs in the second derivative
of the convergence rate with re-
spect to γ). The critical stepsize
appears to be a good predic-
tor for the optimal stepsize.
In addition, the more over-
parameterized the data matrix
(r → 0) is, the smaller the win-
dow of convergent stepsizes
and as its Hessian becomes ill-
conditioned (r → 1), the linear
rate degenerates and the high
temperature phase disappears.
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and two martingale increments

q(vk)− q(vk−1) =− γ(∇q(vk−1))
T( 1

d Kvk−1
)
+ ∆Mlin

k

+ γ2

2 Tr( 1
d K(∇2q))

(
1
d vT

k−1Kvk−1 + E[η2
k ]
)

+ ∆Equad
k + ∆Mquad

k ,

where ∆Mquad
k :=∆T

k ∇
2q∆k − E[∆T

k ∇
2q∆k | Fk−1].

(65)

The remainder of the martingale increments are given by ∆Mlin
k and

are all linear in ∆k. The predictable parts have been further decom-
posed into the leading order terms and an error term ∆Equad

k .
These predictable parts, in turn, depend on different statistics

q1(vk−1). It turns out to approximately describe the risk, we can work
on a manifold indexed by a curve in C2 which approximately closes.
Specifically, we let

Qn(q) := Qn(q, K) ={
q(x), (∇q(x))T R(z; K)x, xT R(y; K)(∇2q)R(z; K)x,

(∇q(x))T R(z; K)β, xT R(y; K)(∇2q)R(z; K)β, ∀ z, y ∈ Γ
}

.

(66)

In order to control the martingales, it is convenient to impose a
stopping time

τ := inf {k : ||vk|| > dε} ∪ {td : ||Vt|| > dε} , (67)

and we introduce the corresponding stopped processes

vτ
k = vk∧τ , Vτ

t = Vt∧(τ/d). (68)

We prove a version of our theorem for the stopped processes and
then show that the stopping time is greater than n with overwhelm-
ing probability.

Our key tool for comparing vtd and Vt is the following lemma.

Lemma 22 (Comparison of SGD to HSGD): Given a quadratic q
with ∥q∥C2 ≤ 1, with Q = Qn(q) ∪ Qn(P) ∪ Qn(∥ · ∥2) as
above,

max
0≤t≤ n

d

|q(vτ
td)− q(Vτ

t )| ≤

sup
0≤t≤n/d

(
|Mlin,τ

⌊td⌋ |+ |Mquad,τ
⌊td⌋ |+ |Equad,τ

⌊td⌋ |+ |MHSGD,τ
t |

)
+ C(∥K∥σ) · sup

g∈Q

∫ n/d

0
|g(vτ

sd)− g(Vτ
s )|ds.

(69)
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Here MHSGD,τ
t is the martingale part in the semimartingale

decomposition of q(Vτ
t ).

Proof. Owing to the similarities of this claim with the proof in
[Paq+22a, Proposition 4.1], we just illustrate the main idea. The idea
is that if we take a g ∈ Q, and we apply (65), then in the predictable
part of g(vt) we have

I1 :=
∫ t

0
∇g(vsd)

TKvsd ds, I2 :=
∫ t

0
∇g(vsd)

T β ds, I3 :=
∫ t

0
vT

sdKvsd ds.

These also appear with coefficients that can be bounded solely using
∥g∥C2 and ∥K∥σ. We get the same, applying Itô’s lemma to g(Vt),
albeit with the replacement vt → Vt. We wish to bound for example
I1(vt) − I1(Vt). We do this by expressing its integrand as p(vt) −
p(Vt) for polynomial p. If g is linear (the final row of (66)), then p is
again linear. For example, if it is g(x) = ∇q(x)T R(z; K)β, then p is
again linear and is given by

p(x) = xTKR(z; K)β = +xT R(z; K)β − zxT β,

where we have used the resolvent identity (K − z)R(z; K) = I. Note
the function xT R(z; K)β is contained in Q by virtue of being in Qn(∥ ·
∥2). Moreover, by Cauchy’s integral formula, we can represent xT β

by averaging −1
2πi xT R(y; K)β over y ∈ Γ. Hence

|p(vtd)− p(Vt)| ≤ ∥Γ∥max
g∈Q

|g(vtd)− g(Vt)|

with ∥Γ∥ the length of the curve (which can be bounded in terms of
∥K∥σ). The same manipulations lead finally to showing every term
included in Q can be controlled in a similar manner, using the other
elements of the class Q.

The second important idea is to discretize the set Q.

Lemma 23 (Discretize the spectral curve): There exists Q̄ ⊆ Q
with |Q̄| ≤ C(∥K∥σ)d4m such that, for every q ∈ Q, there is
some q̄ ∈ Q̄ satisfying ||q − q̄||C2 ≤ d−2m.

Proof. On the spectral curve Γ, we can bound the norm of the resol-
vent. Since

d
dz

R(z; K) = (K − zI)−2,

we have it is norm bounded by an absolute constant. The arc length
of the curve is at most C(∥K∥σ), and so by choosing a minimal net
d−2ε of the manifold Γ × Γ, the lemma follows.
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Now the main technical part of the argument is to control the
martingales and errors. As we work with the stopped process vτ

k we

introduce the stopped proccesses Mlin,τ
k ,Mquad,τ

k , Equad,τ
k , which are

defined analogously to (68).

Lemma 24 (Martingale bounds): For any quadratic q with
∥q∥C2 ≤ 1, the terms Mlin,τ

k ,Mquad,τ
k , Equad,τ

k satisfy the fol-
lowing bounds with overwhelming probability (with a bound
which is uniform in q) for n ≤ d log d

i sup1≤k≤n |M
lin,τ
k | ≤ d−

1
2+5ε,

ii sup1≤k≤n |M
quad,τ
k | ≤ d−

1
2+9ε,

iii sup1≤k≤n |E
quad,τ
k | ≤ d−1+9ε.

Combining Lemmas 22 and 23, along with the above, we conclude
that, for any q̄ ∈ Q̄ with ∥q∥C2 = 1,

|q̄(vτ
td)− q̄(Vτ

t )| ≤ 4d−
1
2+9ε + C(∥K∥σ)max

g∈Q

∫ t

0
|g(vτ

sd)− g(Vτ
s )|ds.

(70)
Hence by Lemma 23 and by bounding ∥g∥C2 over all Q,

max
g∈Q

|q(vτ
td)− q(Vτ

t )| ≤ C(∥K∥σ)

(
d−2 + d−

1
2+9ε +

∫ t

0
max
g∈Q

|g(vτ
sd)− g(Vτ

s )|ds
)

.

(71)
By Gronwall’s inequality, this gives us that with overwhelming prob-
ability

max
g∈Q

max
0≤t≤n/d

|g(vτ
td)− g(Vτ

t )| ≤ C(∥K∥σ)(d−2 + 4d−
1
2+9ε)eC(∥K∥σ)n/d.

(72)
Now we note that the norm function x 7→ ∥x∥2 is one of the quadrat-
ics included in Q. Hence if we let G be the event in the above display,
and we let E = {max0≤s≤n/d ∥Vs∥ ≤ dε/2}, then we have

G ∩ E ∩ {τ ≤ n/d} ⊆ {∥vτ∥ − ∥vτ−1∥ ≥ dε/2} ∩ {τ ≤ n/d}.

This is because on the event {τ ≤ n/d} ∩ E we must have had
∥vτ∥ > dε, but in the step before τ, we had vτ−1 could be compared
to Vτ−1 (due to G, and we had the norm of Vτ−1 was small. Now it is
easily seen that with overwhelming probability, no increment of SGD
between time 0 and n/d can increase the norm by a power of d. So
to complete the proof it suffices to show E holds with overwhelming
probability.

Thus the proof is completed by the following:
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Lemma 25 (Non-explosiveness of HSGD): For any δ > 0 and any
t > 0 with overwhelming probability

max
0≤s≤t

∥Xs∥2 ≤ eC(∥K∥σ)tdδ.

Proof. We apply Itô’s formula to ϕ(Xt) := log(1 + ∥Xt∥2), from which
we have

dϕ(Xt) = −2γ
Xt ·∇R(Xt)

1+∥Xt∥2 dt +
Xt ·γ

√
2
d P(Xt)K dBt

1+∥Xt∥2

+
( P(Xt)

1+∥Xt∥2
2γ2

d Tr(K)− 2γ2P(Xt)XT
t KXt

d
)

dt

The drift terms and the quadratic variation terms can be bounded by
some C(∥K∥σ). Hence with this constant, for all r ≥ 0,

Pr(max
0≤s≤t

ϕ(Xs) ≥ C(∥K∥σ)(t + r
√

t)) ≤ 2 exp(−r2/2).

Taking r =
√

log d log log d, we conclude that with overwhelming
probability

max
0≤s≤t

ϕ(Xs) ≤ C(∥K∥σ)(t +
√

t log d log log d).

5.5 Controlling the errors

The main goal of this section is to control the martingale terms and
error terms; in particular we prove Lemma 24. We will also record for
future use an estimate on ∇q that follows from ∥ · ∥C2 control.

||∇q(x)|| ≤ ∥∇2q∥σ · ||x||+ ||∇q(0)|| ≤ ∥q∥C2 · (||x||+ 1). (73)

Martingale for gradient part of recurrence.

Proof. Comparing (64) and (65), we see that for k ≤ τ

∆Mlin,τ
k =

[ (
wT

k−1mk

) (
mT

k vτ
k−1 − ηk

)
− 1

d wT
k−1Kvτ

k−1

]
=: [∆Mlin 1,τ

k − ∆Mlin 2,τ
k ],

where wk−1 := −γ∇q(vτ
k−1) +

γ2d
d (vτ

k−1 + β).

(74)

Note for k > τ, the stopped martingale increment is 0. Using (73),
∥wk−1∥ ≤ C(γ, d)dε. We will separately bound the contributions from
∆Mlin 1,τ

k and ∆Mlin 2,τ
k in terms of their Orlicz norms. For the first
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part, for any fixed k, we condition on Fk−1 and Assumption 1, we
conclude

||∆Mlin 1,τ
k ||ψ1 ≤

∥∥∥wT
k−1mk

∥∥∥
ψ2

∥∥∥mT
k vτ

k−1 − ηk

∥∥∥
ψ2

≤ Cd−
1
2+2ε · d−

1
2+2ε

(75)

where C is some absolute constant. For the second part, we have

|∆Mlin 2,τ
k | = | 1

d wT
k−1Kvτ

k−1| ≤ Cd−1+2ε. (76)

Combining these, we see that, for every k,

σk,1 := inf{t > 0 : E[exp(|∆Mlin 1,τ
k −∆Mlin 2,τ

k |/t)|Fk−1] ≤ 2} ≤ Cd−1+4ε

(77)
and, by the martingale Bernstein inequality,

Pr

(
sup

1≤k≤n
|Mlin,τ

k − EMlin
0 | ≥ t

)

≤ 2 exp
(
−min

{
t

c max σk,1
,

t2

c ∑n
k=1 σk,1

})
≤ 2 exp

(
−min

{
Ctd1−4ε, Ct2d2−8εn−1

})
.

(78)

As we assume that n ≤ d log d then this gives us

sup
1≤k≤n

|Mlin,τ
k | ≤ d−

1
2+5ε (79)

with overwhelming probability.

Martingale for Hessian part of recurrence.

Proof. Next we consider the contribution from the Hessian part of the
recurrence. We write

γ2

2 (mkmT
k vτ

k−1 − mkηk)
T(∇2q)(mkmT

k vτ
k−1 − mkηk)

= E
[

γ2

2 (mkmT
k vτ

k−1 − mkηk)
T(∇2q)(mkmT

k vτ
k−1 − mkηk)|Fk−1

]
+ ∆Mquad

k .

(80)

Rearranging the terms, we get

∆Mquad
k = AkBk − E[AkBk|Fk−1] (81)

where
Ak := mT

k (∇
2q)mk, Bk := (mT

k vτ
k−1 − ηk)

2. (82)

This can be expanded as

∆Mquad
k =(Ak − E[Ak])(Bk − E[Bk]) + E[Ak]E[Bk]− E[AkBk]

+ (Ak − E[Ak])E[Bk] + (Bk − E[Bk])E[Ak],
(83)
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so we focus first on obtaining subexponential bounds for the quanti-
ties Ak − E[Ak] and Bk − E[Bk] using the Hanson-Wright inequality.
For Ak, we have

Pr(|Ak − EAk| ≥ t)

≤ 2 exp

[
−c min

(
t2

d−2+4ε||∇2q||2HS
,

t
d−1+2ε||∇2q||

)]
≤ 2 exp[−c′ min(t2d1−4ε, td1−2ε)] ≤ 2 exp[−c′′td

1
2−2ε]

(84)

and thus we have the subexponential bound

||Ak − E[Ak]||ψ1 < Cd−
1
2+2ε. (85)

Next we obtain a subexponential bound for Bk. For the part of Bk not
involving ηk, we use Hanson-Wright to get

Pr
(∣∣∣mT

k vτ
k−1(v

τ
k−1)

Tmk − EmT
k vτ

k−1(v
τ
k−1)

Tmk

∣∣∣ ≥ t
)

≤ 2 exp

[
−c min

(
t2

d−2+4ε||vτ
k−1(v

τ
k−1)

T ||2HS
,

t
d−1+2ε||vτ

k−1(v
τ
k−1)

T ||

)]
≤ 2 exp[−c min(t2d2−8ε, td1−4ε)].

(86)

For the terms involving ηk, we use the Orlicz bounds from the as-
sumptions in the set-up to obtain

||mT
k vτ

k−1ηk||ψ1 ≤ ||mT
k vτ

k−1||ψ2 · ||ηk||ψ2 = d−
1
2+2εd−

1
2+ε

= d−1+3ε.
(87)

Since also ||η2
k ||ψ1 = d−1+2ε combining the bounds (86) and (87), we

have
||Bk − E[Bk]||ψ1 < Cd−1+4ε. (88)

Furthermore, we have

E[Ak] = O(1), E[Bk] = O(d−1), (89)

uniformly for all k based on the assumptions on ηk and mk. We now
use (85), (88), (89) to bound each term of (83) in turn.

To bound the contribution from (Ak − E[Ak])(Bk − E[Bk]), we ob-
serve that, for each k, with overwhelming probability, |Ak − E[Ak]| <
d−

1
2+3ε and |Bk − E[Bk]| < d−1+5ε, so we can conclude that, with

overwhelming probability,

n

∑
k=1

∣∣∣(Ak − E[Ak])(Bk − E[Bk])
∣∣∣ < nd−

3
2+8ε < d−

1
2+9ε. (90)
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For the second term of (83) we have∣∣∣E[Ak]E[Bk]−E[AkBk]
∣∣∣ = ∣∣∣E[(Ak −EAk)(Bk −EBk)

]∣∣∣ ≤ E

∣∣∣(Ak −EAk)(Bk −EBk)
∣∣∣.

(91)
We can bound this quantity using

Pr
(∣∣(Ak − EAk)(Bk − EBk)

∣∣ ≥ t
)

≤ Pr(|Ak − EAk| ≥
√

t) + Pr(|Bk − EBk| ≥
√

t)

≤ 4 exp
[
−c min(td1−4ε,

√
td1−4ε)

] (92)

where the bound in the last line comes from combining (84) and (88).
Using this bound, we obtain∣∣∣E[Ak]E[Bk]− E[AkBk]

∣∣∣ ≤ ∫ ∞

0
x Pr

(∣∣(Ak − EAk)(Bk − EBk)
∣∣ ≥ x

)
dx

≤
∫ 1

0
4x exp(−cxd1−4ε)dx +

∫ ∞

1
4x exp(−c

√
xd1−4ε)dx

(93)

Making the change of variables y = xd1−4ε in the first integral and
z =

√
xd1−4ε in the second integral, this becomes

4d−2+8ε
∫ d1−4ε

0
y exp(−cy)dy+ 4d−4+8ε

∫ ∞

d1−4ε
z2 exp(−cz)dz = O(d−2+8ε).

(94)
Thus,

n

∑
k=1

∣∣∣E[Ak]E[Bk]− E[AkBk]
∣∣∣ = O(nd−2+8ε). (95)

Finally, we note that the remaining terms of (83), namely (Ak −
E[Ak])E[Bk] and (Bk − E[Bk])E[Ak], are martingale increments with

||(Ak −E[Ak])E[Bk]||ψ1 ≤ Cd−
3
2+2ε, ||(Bk −E[Bk])E[Ak]||ψ1 ≤ Cd−1+4ε.

(96)
Applying the Martingale Bernstein inequality, we conclude

Pr

(
sup

1≤k≤n

∣∣∣∣∣ k

∑
j=1

(Aj − E[Aj])E[Bj] + (Bj − E[Bj])E[Aj]

∣∣∣∣∣ ≥ t

)

≤ 2 exp
(
−min

{
t

c max σk,1
,

t2

c ∑n
k=1 σk,1

})
≤ 2 exp

(
−min

{
Ctd1−4ε, Ct2d2−8εn−1

})
.

(97)

Thus, for n ≤ d log d, we get

sup
1≤k≤n

∣∣∣∣∣ k

∑
j=1

(Aj − E[Aj])E[Bj] + (Bj − E[Bj])E[Aj]

∣∣∣∣∣ ≤ d−
1
2+5ε (98)
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with overwhelming probability. Finally, combining the bounds from
(90), (95), (98), we conclude that, for n ≤ d log d,

sup
1≤k≤n

|Mquad,τ
k | ≤ d−

1
2+8ε (99)

with overwhelming probability. This completes the proof of part (ii)
of the lemma.

For part (iii), we observe that ∆Equad,τ
k = E[AkBk]− E[Ak]E[Bk] +

O(d−2+4ϵ), the error terms arising from uk cross terms, so that the
bound of Equad,τ

k follows immediately from (95).
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6 Homogenization of Multipass SGD on the least squares

This is adapted from [Paq+22a], building on earlier work in [Paq+21].

10 1 100 101 102

epochs

100

2 × 100

3 × 100

Expected risk                   Volterra
n = 100
n = 400
n = 1600
n = 6400

Figure 5: Risk curves of SGD
across different dimensions.
In each dimension, 10 runs of
multi-pass constant step-size
SGD are performed on a least
squares problem, and the test
error is computed over time.
We then display 80% confidence
intervals over time (i.e. we dis-
card the largest and smallest
at error at each point in time).
The curves concentrate around
a high-dimensional limit value.
Note that time is scaled in
epochs. The Volterra curve is
the limiting risk curve.

In this section, we will deal exclusively with multi-pass SGD on
the least squares problem. Strictly speaking, this will no longer
purely concern the problem of linear regression (although this re-
mains the main motivating application). Suppose that we are given
an n × d matrix A and a target vector b. We look at the least squares
problem

min
x∈Rd

{
L (x) := 1

2n∥⟨A, x⟩d − b∥2 = 1
2n

n

∑
i=1

(⟨ai, x⟩ − bi)
2
}

.

The SGD we now consider is

xk+1 = xk − γk(⟨aik+1
, x⟩ − bik+1

)aik+1
, {ik} iid Unif({1, 2, · · · , n}).

(100)
This is multi-pass SGD.

Now a fruitful point of view in this case is to actually recast this
as streaming SGD, which is possible if we view D as the empirical
distribution of the pairs ((ai, bi) : 1 ≤ i ≤ n) so that samples from D
are given by

(a, b) law
= (ai, bi), i law

= Unif({1, 2, · · · , n}).

The expected risk, considered this way, would be the empirical risk
L . For clarity, we shall still refer to it as the empirical risk, as in an
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ERM context, it may be helpful to still consider a population risk.
However, this does give a clear guess for how to approximate the
resulting SGD in high-dimensions. Define the sample covariance
matrices

K̂ := 1
n AT A and Ǩ := 1

n AAT , (101)

where the first is the (usual) feature-feature covariance and the
second is (up to scaling) an empirical estimator of the covari-
ance between the samples. If we use (56) as a guide, then with
γk = γ(k/d)/d

dXt = −γ(t)
(
∇L (Xt) +

√
2
dL (Xt)K̂dBt

)
. (102)

On the other hand, what is clear is that this distribution cannot
satisfy Assumption 1 in two important ways. First the data absolutely
cannot generically Part 2 (the Hanson–Wright inequality) uniformly
in B, as the case of B being given by an outer product a1 ⊗ a1, which
will cause large non-concentration issues. Second, there is no un-
derlying model for the targets b, and no clear candidate for a target
β.

Assumption 2 (Empirical data assumptions): Suppose that the
norm of K̂ (and hence Ǩ) is bounded above independent of n
and d. Suppose Γ is the contour enclosing [0, ∥K̂∥] at distance
1. Suppose there is a θ ∈ (0, 1

4 ) for which

1. max
z∈Γ

max
1≤i≤n

|eT
i R(z; Ǩ)b| ≤ nθ−1/2.

2. max
z∈Γ

max
1≤i ̸=j≤n

|eT
i R(z; Ǩ)eT

j | ≤ nθ−1/2.

3. max
z∈Γ

max
1≤i≤n

|eT
i R(z; Ǩ)ei − 1

n Tr R(z; Ǩ)| ≤ nθ−1/2.

In a random matrix theory context, such types of results are
standard. That is, under quite general assumptions, if we suppose
that the rows of A are given by independent samples from a high-
dimensional distribution, one gets that the off-diagonal resolvent
entries of Ǩ are small and the on-diagonal entries approximate the
trace. See for example [KY17].

We also need that the initialization does not pick out a part of the
feature covariance matrix which is unusally dense.

Assumption 3 (Non-spectral Init): Let Γ be the same contour as in
Assumption 2 and let θ ∈ (0, 1

2 ). Then

max
z∈Γ

max
1≤i≤d

|eT
i R(z; K̂)x0| ≤ dθ−1/2.
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Exercise 12 (Initialization): Show that if
√

dx0 has iid mean 0,
subgaussian entries, K̂ has bounded norm then Assumption 3

holds with overwhelming probability.

Finally for comparison of SGD to its homogenized counter-part,
we need that the the risk we consider is well-behaved.

Assumption 4 (Quadratic statistics): Suppose R : Rd → R is
quadratic, i.e. there is a symmetric matrix T ∈ Rd×d, a vector
u ∈ Rd, and a constant c ∈ R so that

R(x) = 1
2 xTTx + uTx + c. (103)

We assume that R satisfies ∥R∥C2 ≤ C for some C independent
of n and d. Moreover, we assume the following (for the same Γ
and θ) as in Assumption 2:

max
z,y∈Γ

max
1≤i≤n

1
n |e

T
i AT̂ATei − Tr(K̂T̂)| ≤ ∥T∥n−θ , where

T̂ = R(z)TR(y) + R(y)R(z), R(z) = R(z; K̂).
(104)

Then under all these assumptions, we can compare this risk as it
evolves under SGD to the same under homogenized SGD.

Theorem 26: Homogenization of multi-pass SGD

Suppose n ≥ dϵ̃ and n ≤ dC and suppose that Assumptions
2, 3 and 4 are in force. There is a ε > 0 depending only on θ

and ϵ̃ so that for any deterministic T > 0

sup
0≤t≤T

|R(xtd)−R(Xt)| ≤ d−ε̃/2

with overwhelming probability.

Example 18: SGD for Linear regression

As a principle example suppose one takes a linear regression
setup where for a fixed d × d covariance matrix Σ ≻ 0 of

bounded norm, we set a sample (a, b) law
= D to be constructed

by
a =

√
Σz, b = ⟨a, β⟩+ ηw,

where z is an iid 1-subgaussian vector and w is mean 0 1-
subgaussian. We set P(x) = 1

2 E(⟨a, x⟩ − b)2.
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Let ((ai, bi) : 1 ≤ i ≤ n) be n samples from this distribution,
and form a matrix (A, b) by setting the rows of A to be given
by the samples {ai}. Then provided n/d is bounded below
independent of d, Assumption 2 holds for any θ > 0 with
overwhelming probability. Suppose x0 is as in Exercise 12,
so that Assumption 3 holds. Finally both P and L satisfy
Assumption 4 with overwhelming probability. Hence for R

given by either of P or L ,

sup
0≤t≤T

|R(xtd)−R(Xt)| ≤ d−ε̃/2

with overwhelming probability.

Remark 13 (Random (fully connected) feature regression): In ran-
dom features regression, suppose that one has an underlying
data distribution D0 on Rm ⊗ Rp. Motivated by neural net-
works (and especially by wide neural networks), one considers
an activation function σ : R → R and one introduces a weight
matrix W ∈ Rd ⊗ Rm. Then one transforms the data to make a
new distribution D by setting a sample from (a, b) law

= D to be
given by

Output : (σ(⟨W, a⟩m), b) where (a, b) ∼ D0.

If W is drawn simply from N(0, Idm ⊗ Idp), then this is a ran-
dom fully-connected feature model. More general, structured
covariances can be used to produce more elaborate and inter-
esting models: see [RR08].

Random features models can also be seen to satisfy the as-
sumptions of Theorem 26; see [Paq+22a] for details.

This means we have a Volterra risk model for the training loss:

Definition 48 ((Empirical) Volterra model for training loss): Let Xt

be the path of gradient flow started from initialization X0 for
minimizing the empirical risk, i.e.

Ẋt = −∇L (Xt).

Let Kγ be the function from [0, ∞) → [0, ∞) given by

Kγ(t) := γ2 Tr(K̂2e−2γK̂t)

d
.
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Then the Volterra risk model is the solution of the convolution-
type Volterra equation

Ψ(t) := L (Xγt) +
∫ t

0
Kγ(t − s)Ψ(s) ds.

Now to give the population risk P , it is helpful to return to the Often in this context, this is also re-
ferred to as the generalization error,
meaning how well the estimator per-
forms on a new sample from the
distribution.

behaviour of homogenized SGD.
The empirical risk curve concentrates around the Volterra risk

model, as in Theorem 23. It follows that for homgenized SGD, we
actually have the following approximation

dXt ≈ −γ(t)
(
∇L (Xt) +

√
2
d Ψ(t)KdBt

)
,

which we shall see actually describes a Gaussian centered around
gradient flow.

To describe gradient flow, we need a surrogate for β. The correct
relacement comes from properly projecting b Namely, we decompose

∥Ax − b∥2 = ∥Ax − A(AT A)−1 ATb + η∥2 = ∥A(x − β∗)∥2 + η2,

where η is a vector orthogonal to the rows of A, i.e. ATη = 0. Here
we have set β∗ = (AT A)−1 ATb. It follows that we have

∇L (x) = K̂(x − β∗)

Then β∗ is the appropriate generalizer of β in the sense that gradi-
ent flow on L acts by

Xt − β∗ = e−tK̂(X0 − β∗),

and moreover, homogenized SGD can be expressed as

dXt ≈ −γ(t)
(
K̂(Xt − β∗) +

√
2
dL (Xt)K̂dBt

)
.

Hence, working for simplicity in the case γ(t) ≡ γ,

d(eγtK̂(Xt − β∗)) = eγtK̂
√

2
dL (Xt)K̂dBt ≈ eγtK̂

√
2
d Ψ(t)K̂dBt.

This leads to the following approximation

Lemma 26 (Gaussian approximation): With γ(t) ≡ γ, we have
that for any T and any ϵ > 0, with overwhelming probability

sup
0≤t≤T

∣∣∣∣Xt −Xγt +
∫ t

0
γe−γ(t−s)K̂

√
2
d Ψ(s)K̂dBs

∣∣∣∣ ≤ d−1/2+ϵ.

Thus for evaluation against another statistic, such as P(Xt), we
have:
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Corollary 7 (Generalization error model): The generalization error
P(Xt) evolves according to the risk curve

P(Xt) = P(Xγt) +
∫ t

0

γ2

d Tr(e−2γ(t−s)K̂KK̂)Ψ(s) ds + Et

The error Et tends to 0 like d−1/2+ϵ with overwhelming proba-
bility uniformly on compact sets.

6.1 Comparison of single and multi-pass case

A few major qualitative points can be made here. In an empirical risk
minimization framework, as multi-pass SGD minimizes the empirical
risk L , it has the ability to overfit. Thus, running longer in multi-pass
SGD can in fact actually degrade test loss performance.

On the other hand, the excess risk of using multi-pass SGD over
gradient flow, which is the term

Excess-risk(t) :=
∫ t

0

γ2

d Tr(e−2γ(t−s)K̂KK̂)Ψ(s) ds,

depends qualitatively on two main features, the size of γ and the
behavior of the training loss Ψ. In particular, when Ψ(t) → 0 (which
in particular implies that γ is less than the convergence threshold
2 Tr(K̂)/d) then the excess risk of SGD tends to 0.

In situations where Ψ(t) → Ψ(∞) > 0, then the excess risk in-
curred tends to

Excess-risk(∞) := γ
2d Tr(KΠ(K̂))Ψ(∞),

where Π(K̂) is the projection onto the span of K̂. Note that in the
streaming case, there is also excess risk caused by SGD over gradient
flow, and it follows a similar recipe.

From a risk minimization point of view, one can ask whether the
danger of overfitting using multi-pass SGD outweighs the cost of
using one-pass SGD, which is limited in the number of steps by the
number of data points? The answer is complicated and depends
greatly on the problem, see as an illutration Figure 6 and 7.

6.2 Proof strategy for homogenized SGD

The general plan of the proof follows that of streaming SGD, with a
few important differences. We give an overview of the strategy here.
As there, we look to evaluate the updates of a quadratic test statistic
over time.
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Figure 6: Risk curves for a
simple linear regression prob-
lem. Multi-pass SGD, its high
dimensional equivalent (i.e.
“Volterra”), Streaming SGD (i.e.
one-pass with varying dataset
size), and the expected risk of
homogenized SGD (“Streaming
Volterra”) are all plotted. Risk
levels for streaming SGD at
various levels n are plotted for
comparison against the corre-
sponding multi-pass version.
Note that at smaller dataset
sizes, multi-pass SGD improves
greatly over one-pass SGD. At
higher dataset sizes, they are
similar and in fact multi-pass
SGD always underperforms.

Now for an update, we have from (100)

q(xk+1)− q(xk) = −γk⟨∇q(xk), aik+1
⟩(⟨aik+1

, xk⟩ − bik+1
)

+
γ2

k
2 ⟨∇2q(xk), a⊗2

ik+1
⟩(⟨aik+1

, xk⟩ − bik+1
)2.

(105)

We then proceed to compute the conditional means of both of these
terms.

The first term we connect to the empirical risk, via

E[⟨∇q(xk), aik+1
⟩(⟨aik+1

, xk⟩ − bik+1
) | Fk]

= 1
n ⟨∇q(xk), AT(Ax − b)⟩

= ⟨∇q(xk),∇L (xk)⟩.

As for the second term, we define fi(x) = 1
2 (⟨ai, xk⟩ − bi)

2 and
observe this allows us to express it as

1
2 ⟨∇

2q(xk), a⊗2
ik+1

⟩(⟨aik+1
, xk⟩ − bik+1

)2 = ⟨∇2q(xk), a⊗2
ik+1

⟩ fik+1
(xk).

If aik+1
were independent of ∇2q(xk) = ∇2q (recall that q is quadratic),

then we could approximate ⟨∇2q(xk), a⊗2
ik+1

⟩ (using something like the
Hanson-Wright inequality) by

⟨∇2q(xk), a⊗2
ik+1

⟩ ≈ ⟨∇2q(xk), K̂⟩.

Hence, it would suffice to work on the event E q on which

max
i

|⟨∇2q, a⊗2
i − K̂⟩| ≤ ∥∇q∥2n−1/2+θ .
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Figure 7: Risk curves for fully-
connected random features
model (with d = 6000) built
on CIFAR-5m, empirical (top)
and test-loss (bottom). The
CIFAR-5m dataset [NNS21] is
a synthetically generated 5 mil-
lion data-point set of images,
with the same class structure
and image geometry as CIFAR-
10. We compare running SGD
on these curves as we vary the
size of the subset used in each
run. Note that in generalization
performance, multi-pass SGD
continues to improve gener-
alization performance up to
around 2 × 104 = 20, 000 it-
erations (for all n displayed),
which is about 5 epochs in
the n = 4000 case. Achiev-
ing the same performance
with streaming requires about
105 = 100, 000 iterations.
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Now suppose we introduce the stopping time τ given by

inf{k : max
i

fi(xk) ≥ nθ},

then for k > τ we have

|E[⟨∇2q(xk), a⊗2
ik+1

⟩ fik+1
(xk) | Fk]− ⟨∇2q, K̂⟩L (xk)| ≤ n−1/2+2θ .

Thus, we have a martingale decomposition

q(xτ
k+1)− q(xτ

k ) = −γk⟨∇q(xτ
k ),∇L (xτ

k )⟩+ γk∆Mlin
k

+
γ2

k
2 ⟨∇2q, K̂⟩L (xτ

k ) + γkKLk + γ2
k ∆Mquad

k ,
(106)

where KLk is a deterministic error controlled by n−1/2+2θ on E q. The
martingale increments ∆Mlin

k and ∆Mquad
k can be controlled using

martingale concentration techniques and the implied control from the
stopping time τ.

Now as in (66), we perform this analysis over a class of functions.
This function class only need to be modified slightly, to account for
the change of β. So we define:

Qn(q) := Qn(q, K̂) ={
q(x), (∇q(x))T R(z; K̂)x, xT R(y; K̂)(∇2q)R(z; K)x,

(∇q(x))T R(z; K̂)ATb, xT R(y; K̂)(∇2q)R(z; K)ATb, ∀ z, y ∈ Γ
}

,

(107)

and as in the streaming setting, we use a function class Q =

Qn(L , K̂) ∪ Qn(∥ · ∥2, K̂) ∪ Qn(R, K̂), where R is the additional
risk that we look to use.

Now the remainder of the proof proceeds as follows.

1. We need to show we can work on the event E q for all q ∈ Q. This
is where Assumption 4 plays its role (specifically for R). For the
norm ∥ · ∥2 and for L , we get this control from Assumption 2.

2. Let σ be the first time k that L (xk) > C (for a large but unimpor-
tant C independent of d, n). Now show that τ does not occur be-
fore σ with overwhelming probability. This uses a bootstrap argu-
ment, which shows that under the assumption the max-coordinate
has some initial control, it can be improved with high probability.

3. The martingale terms are controlled with overwhelming probabil-
ity using Freedman-inequality type bounds.
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