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Background material

Probability formalism

This course is on stochastic process theory, which concerns, in brief,
the (measure-theoretic) probability theory of sequences of random
variables. In fact, the most fundamental sequence of random vari-
ables – the independent, identically distributed real valued random
variables (iid sequences) – is usually exluded from this course. The
properties of iid sequences are generally covered in a first semester
course, such as MATH356/587.

In this section, we develop briefly the background material on
which this course rests. First, we will always have in the background
a probability triple (Ω, F , Pr), of a (hidden) state space Ω which
is just some set, a σ-algebra F , and a probability measure Pr . In
standard probability theory, we do not put any further assumptions
on this probability space. The cost of this choice is that we need to
enforce assumptions on the random variables that are defined on this
probability space.

The most important random variables are the real-valued random
variables, which are functions X from Ω to R with the property that
X−1(E) ∈ F for all Borel subsets E of R. In this course, we will also
want to deal with random variables living in other state spaces. The
natural extension are standard Borel random variables. A measurable
space (S, A ) is standard Borel if there exists a metric d on S which
makes it into a complete separable metric space and so that A is the
Borel σ-algebra generated by this metric. A space S that satisfies this is called a

Polish space.
Essentially every random variable we construct in this course will

be standard Borel. A non-exhaustive list of such spaces are below:

1. Real-valued random variables, i.e. those mapping to (R, B) where
B is the Borel σ-algebra on R.

2. Countably-valued random variables, i.e. those mapping to (S, 2S)

for a countable set S, and where 2S is the power set.

3. Sequence spaces built over other Borel spaces, which is to say that
(Xj : j ∈ N) is a sequence of standard Borel random variables,
we can consider the whole sequence Y := (Xj : j ∈ N) itself
as a random variable. It maps to the countable product space,
equipped with the σ-algebra given by the product σ-algebra of
the associated σ-algebras. This product σ-algebra turns out to be
the Borel σ-algebra associated to the product space, which is itself
again a Polish space.

The core background for this course from MATH356/587 are
(weak/strong) laws of large numbers and the central limit theorem. All
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of these, in their simplest form, concern sequences (Xj : j ∈ N0)

of iid real valued random variables. Each of these three theorems
is equipped with a different notion of convergence of sequences of
random variables, which will all play a role in this course.

We write N for the natural numbers
{1, 2, 3, · · · } and N0 for the numbers
{0, 1, 2, 3, · · · } .It will be convenient to generalize these convergences slightly to

the standard Borel space setting. So we will suppose that (Xj : j ∈
N0) are a sequences of random variables taking values in a standard
Borel space (S, A ), with an associated metric d.

The simplest form of stochastic convergence is in-probability con-
vergence, which we recall:

Definition 1 (In-probability convergence): The sequence (Xj : j ∈
N0) converges in-probability to X0 if for all ε > 0

lim
j→∞

Pr(d(Xj, X0) > ε) = 0,

in which case we write Xj
Pr−−→

j→∞
X0.

The weak law of large numbers then asserts that the time-average of
an iid sequence is its ensemble average (which is to say its expecta-
tion):

Theorem 1: Weak law of large numbers

Suppose (Xj : j ∈ N) are iid real valued random variables,
and suppose that E|X1| < ∞. Then

1
n

n

∑
j=1

Xj
Pr−−−→

n→∞
EX1.

In fact, under the assumptions given above, much more is true.
With the same setup, we can replace the in-probability convergence
with the stronger almost sure convergence.

Definition 2 (Almost sure convergence): The sequence (Xj : j ∈
N0) converges almost surely to X0 if

Pr(lim sup
j→∞

d(Xj, X0) > 0) = 0,

in which case we write Xj
a.s.−−→

j→∞
X0.

Almost sure convergence implies in-probability convergence. Con-
versely, it is generally the case that in-probability convergence is
strictly weaker than almost sure convergence.

In a finite probability space (i.e. where
there is a finite set E such that Pr(Ec) =
0), almost sure convergence and in-
probability convergence are actually
equivalent.

There is another partial converse of
in-probability convergence and almost

sure convergence: if Xj
Pr−−→

j→∞
X0 then

there is a (deterministic) subsequence jn
so that Xjn

a.s.−−−→
n→∞

X0.

The strong law of large numbers states:
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Theorem 2: Strong law of large numbers

Suppose (Xj : j ∈ N) are iid real valued random variables,
and suppose that E|X1| < ∞. Then

1
n

n

∑
j=1

Xj
a.s.−−−→

n→∞
EX1.

Remark. As formulated, the weak law of large numbers is a little
sad (it’s just worse!). There are other formulations of the weak
law which make it more interesting. For example, under the
assumption that (Xj : j ∈ N0) have the same mean, satisfy
supj EX2

j < ∞ and are uncorrelated, then the weak law still
holds. Furthermore, in this case, this is just a straight applica-
tion of Chebyshev’s inequality, which is much simpler than the
strong Strong law.

Finally, the other main result on iid sequences is the central limit
theorem (CLT). The central limit theorem gives in a sense the “next
order term” in the law of large numbers, which is to say it quantifies
how close is 1

n ∑n
j=1 Xj to EX1 as a function of n, under the assump-

tion EX2
1 < ∞.

To simply get the order, the variance of
Yn := 1

n ∑n
j=1 Xj −EX1 is easily checked

to be 1/n. Hence from Chebyshev’s in-
equality Pr(|Yn|

√
n > t) ≤ Var(X1)/t2.

This shows that, in order of magnitude,
Yn is 1/

√
n.

However, unlike with the laws of large numbers, it is not possible
to characterize this convergence as either weak or strong conver-
gence. This leads to the final basic notion of convergence:

Definition 3 (Weak convergence): The sequence (Xj : j ∈ N0)

converges in law to X0 if for all bounded continuous functions
φ : S→ R

lim
j→∞

Eφ(Xj) = Eφ(X0)

in which case we write Xj
law−−→

j→∞
X0.

This type of convergence has a long list of equivalent formulations
(and an equally long list of equivalent names: weak convergence,
weak-* convergence, and convergence in distribution are all common
alternative names). For working with this type of convergence, it is
convenient to be able to change between these different formulations,
which goes by the name Portmanteau lemma:

Lemma 1 (Portmanteau Lemma): The following are equivalent for
random variables (Xj : j ∈N0) on Polish space S:

1. The sequence converges in law: Xj
law−−→

j→∞
X0.
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2. Let BL be all functions f from S→ R which are bounded
above by 1 and which satisfy | f (x)− f (y)| ≤ d(x, y). Then

sup
φ∈BL

|Eφ(Xj)−Eφ(X0)| → 0.

This also defines a metric for weak-convergence (the
“bounded-Lipschitz” or “Dudley” metric).

3. For all open sets A ⊂ S,

lim inf
j→∞

Pr(Xj ∈ A) ≥ Pr(X0 ∈ A).

4. For all sets A ∈ A for which Pr(X0 ∈ ∂A) = 0, where ∂A is
the boundary of A,

lim
j→∞

Pr(Xj ∈ A) = Pr(X0 ∈ A).

In the important case of real-valued random variables, we can add
a few extra bulletpoints to this list, which are especially useful for the
development of the theory of weak convergence.

Lemma 2 (Portmanteau Lemma, real case): The following are
equivalent for real-valued random variables (Xj : j ∈ N0) on
Polish space S:

1. The sequence converges in law: Xj
law−−→

j→∞
X0.

2. For all t ∈ R so that Pr(X0 = t) = 0,

lim
j→∞

Pr(Xj ≤ t) = Pr(X0 ≤ t).

This can also be formulated as saying the distribution
functions of Xj converge to the distribution function of X0 at
all its points of continuity.

3. The quantile functions Qj(p) := inf{x ∈ R : p ≤ Pr(Xj ≤ x)}
converge at all points of continuity.

4. The characteristic functions ψj(ξ) = EeiξXj converge
pointwise, i.e.

lim
j→∞

ψj(ξ) = ψ0(ξ) ∀ ξ ∈ R.

This also generalizes to Rd–valued random variables
(Xj : j ∈N0) via ψj(ξ) = Eei〈ξ,Xj〉 for the real inner-product
〈·, ·〉.



MATH 547 Lecture notes Lecture Notes | 8

Finally, the central limit theorem states that the deviations in the
strong law of large numbers, appropriately rescaled converge to a
standard normal random variable.

Theorem 3: CLT

Suppose (Xj : j ∈ N) are iid real valued random variables,
and suppose that E|X1|2 < ∞. Then

1√
n

n

∑
j=1

(Xj −EX1)
law−−−→

n→∞

√
Var(X1)N(0, 1).
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Conditioning

Conditioning is the action of changing a probability space by reveal-
ing part of the randomness. In the context of a stochastic process
(Xj : j ∈ N0), one can consider the index j as a measurement of time.
In that way, at a time j, there are outcomes which have been observed
(X1, X2, · · · , Xj) and there are outcomes which have not yet been ob-
served (Xk : k > j). In the case of iid sequences, the law of the future
(Xk : k > j) has no dependency on the outcomes (X1, X2, · · · , Xj)

(hence the nomenclature independent). To move away from the case
of independent sequences, we would instead like to have probabil-
ity laws where in some reasonable way, the law of (Xk : k > j) can
depend on the outcomes of (X1, X2, · · · , Xj).

Conditioning is substantially simpler in discrete probability
spaces, or similarly, when the random variables on which we con-
dition take on finitely many values. This however will not be suffi-
cient for what we need to do, and so we need to develop conditional
expectation and conditional probability a little more generally. For
concreteness, however, it is helpful to develop all the definitions in
the case of discrete probability spaces.

The starting point is simply:

Definition 4 (Conditional Probability): The conditional probability
of A given B, defined for Pr(B) > 0, is

P(A | B) =
P(A ∩ B)

P(B)
.

Recall that this gives an intuitive way to define independence:

Definition 5 (Independence): Events A and B are independent
if Pr(A ∩ B) = Pr(A)Pr(B). If Pr(B) > 0, then this can be
equivalently formulated as Pr(A | B) = Pr(A).

The conditional probability Pr(· | B) is another probability measure
on the space (Ω, F ), and hence it is possible to define expectations
with respect to this measure. The conditional expectation E[X | B],
can be uniquely defined by E[1A | B] = Pr(A | B). 1enerally, hav- 1 G

ing defined expectations for indicator functions, one can extend the
expectation simple random variables, which are finite linear combina-
tions of indicator functions and then to general random variables by
requiring that the expectation satisfies the monotone convergence
theorem.
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Example 1: Dice roll

Let X be a random variable with X law
= Unif({1, 2, 3, 4, 5, 6}).

Let B be the event {X ∈ {4, 5, 6}} and let A be the event
{X ∈ {3, 4}}. Then

Pr(A | B) = Pr(X = 4)/ Pr(B) = 1/3.

Since Pr(A) = 1/3, we even have A is independent of B.
From linearity,

E[X | B] =
6

∑
j=1

j Pr(X = j | B) =
6

∑
j=4

j/3.

Now, we need to go beyond conditioning on events and condition
on random variables. In the case that the random variable X has a
finite number of outcomes, we can do this building on Definition .

Definition 6 (Conditioning on a simple RV): Suppose that X is a
simple random variable (meaning there is a finite set U so that
Pr(X ∈ U) = 1), define for nonnegative random variables Y and
for random variables Y with E|Y| < ∞

E[Y | X] = ∑
u∈U

E[Y | {X = u}]1 {X = u} .

Example 2: Dice roll

Continuing with a dice roll X
and B the event X ≥ 4, let
Y = 1B.
Then

Pr(X = 4 | Y) = (1/3) · 1B + 0 · 1Bc .

On the other hand with A the
event {X ∈ {3, 4}}.

Pr(A | Y) = (1/3)1B + (1/3)1Bc

= 1/3.

This defines a random probability measure Pr(· | X) by Pr(A | X) =

E[1A | X], which allows us to conceptually do probability theory,
having revealed the outcome of the experiment (provided we can
describe the whole family of laws {Pr(· | X = u) : u ∈ U}).

The conditional expectation E[ · | X] can be considered as a par-
tial expectation, in which X is “revealed” and the remainder of the
randomness is averaged over. This conditional expectation remains
random, and if we take the expectation of it, we take the total expec-
tation. This gives us the law of total expectation:

Theorem 4: Law of Total Expectation: discrete case

For nonnegative random variables Y and for random vari-
ables Y with E|Y| < ∞,

E(E[Y | X]) = EY.
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Proof.
E(E[Y | X]) = ∑

x
E[Y | X = x] · Pr(X = x)

= ∑
x

E[Y1X=x]

= E

[
Y ∑

x
1X=x

]
= E(Y)

More generally, we can consider iterated conditional expectations,
in which we condition on partial information, and then take partial
expectations revealing even more.

Theorem 5: Tower property of conditional expectation

For nonnegative random variables Y and for random vari-
ables Y with E|Y| < ∞, and for random variables X, Z

E(E[Y | (X, Z)] | X) = E[Y | X] = E(E[Y | X] | (X, Z))

Example 3: Dice roll

Continuing with a dice roll X, the event B that X ≥ 4, and
the event A that X ∈ {3, 4} let Y = 1B and Z = 1A.
Then, partitioning the space into the various outcomes of
(Y, Z),

E(X | (Y, Z)) = 1.51{1,2}(X)+ 31{3}(X)+ 41{4}(X)+ 5.51{5,6}(X).

Taking expectation over everything gives

E[E(X | (Y, Z))] = 1.5 1
3 + 3 1

6 + 4 1
6 + 5.5 1

3 = E(X).

Taking conditional expecation

E[E(X | (Y, Z)) | Y] = 21{1,2,3}(X) + 41{4,5,6}(X).

Abstract conditional expectation

To generalize beyond conditioning on simple random variables, we
need the notion of conditioning on a σ-algebra G ⊂ F . This will be a
direct generalization of the conditioning considered above by taking
G = σ(X).

Definition 7 (Abstract conditional expectation): Let Y be either a
non-negative random variable Y (or a random variable Y with
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E|Y| < ∞). For a σ-algebra G ⊂ F , the conditional expectation
of Y, E[Y | G ] is a random variable that satisfies

1. E[Y | G ] is G –measurable.

2. For any event G ∈ G

E[1GY] = E[1GE(Y | G )].

In the case that G = σ(X), we write E[Y | X] := E[Y | G ].

An important piece of context, which helps justify the notation
that E[Y | X] = E[Y | σ(X)], is a structure theorem for σ(X)–
measurable random variables:

Lemma 3: Suppose X is a random variable taking values in
(S, A ). If Y is a real valued random variable and Y is σ(X)–
measurable, then there is measurable function h : S→ R so that
Y = h(X) almost surely.

Hence, the conditional expectation E[Y | X] is a function of X.
Conditional expectation exists and is unique (see for example

Durrett, Probability: theory and examples[Chapter 4]):

Theorem 6: Uniqueness of CE

Conditional expectation exists and is unique in the following
sense: if X1 and X2 both satisfy the definition of conditional
expectation, then X1 = X2 a. s.

Since in fact there can be multiple nonequal random variables
which satisfy the definition of conditional expectation, we say any
random variable that safisfies Definition 7 is a version of the condi-
tional expectation.

Example 4: Discrete case

In the case that X takes values in a finite set U and G = σ(X)

we can check that Definition 6 gives a consistent answer with
Definition 7, and hence gives an explicit construction of the
conditional expectation.
From Definition 6,

E[Y|X] = ∑
u∈U

E[Y | {X = u}]1 {X = u} =: Y1.

Then this random variable Y1 is G –measurable. Any event
G ∈ G can be expressed as {X ∈ E} for some subset E ⊆ U.
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Then

E[1GY] = ∑
u∈E

E[Y1 {X = u}]

= E
(

∑
u∈U

E[Y | {X = u}]1 {X = u} 1G
)

= E[1GY1].

In practice, finding the conditional expectation of a random vari-
able has no simple recipe, but there are two other essential cases
where conditional expectation can actually be computed. Verifying
that something is the conditional expectatiotn is relatively simple, as
conditional expectation is unique, and it just needs to satisfy Defini-
tion 7.

Lemma 4: Suppose that (X, Y) are independent random vari-
ables on some space (S, A ). Let h : S2 → R be a bounded
measurable map:

E[h(X, Y) | X] =
∫

S
h(X, y)PrY(dy).

Here PrY is the law of Y.

Proof. This is a direct application of Fubini’s theorem, and the defini-
tion of conditional expectation.

The second case is when one has joint densities:

Lemma 5: Suppose that (X, Y) is a random vector in R` × Rd

having a joint density f with respect to Lebesgue measure.
Then conditionally on X, Y has a density on Rd, fY|X given by

fY|X(y) =
f (y, X)∫

R` f (y, X) dy
.

Moreover, for bounded measurable ψ : R` → R

E[ψ(Y) | X] =
∫

R`
ψ(y) f (y, X) dy.

This is again Fubini’s theorem.
Besides these cases where it is easy to find the conditional ex-

pectation, there are a few general properties worth recording about
conditional expectation. First, the law of total expectation generalizes:
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Theorem 7: Law of Total Expectation

For nonnegative random variables Y and for random vari-
ables Y with E|Y| < ∞ and for a sub-σ-algebra G ⊆ F

E(E[Y | G ]) = EY.

Proof. Use the definition of conditional expectation with G = Ω.

Going a step further, the nesting property generalizes:

Theorem 8: Tower property

For nonnegative random variables Y and for random vari-
ables Y with E|Y| < ∞, and for two σ-algebras H ⊆ G F ,

E(E[Y |H ] | G ) = E[Y |H ] = E(E[Y | G ] |H )

This follows with a similar proof. Note the smaller σ-algebra al-
ways wins, or, said differently, having averaged over more random-
ness, it cannot be undone.

We also summarize two other important special, trivial cases
where the conditional expectation is trivial

Theorem 9: S

ppose Y is either nonnegative or Y has E|Y| < ∞ and sup-
pose G is a sub-σ-algebra G ⊆ F .

1. If Y is independent of G then E(Y | G ) = E(Y).

2. If Y is G –measurable, E(Y | G ) = Y.

Regular conditional probability

Conditional expectation has many useful properties, but it does not
quite function the way that we would like to do conditioning, which
is to say that we “freeze” some random variables and then work on a
probability space that depends on those frozen variables. (In fact, in
all 3 of the 3 easy examples Lemma 5, Lemma 4 and Theorem 4, we
actually did construct a random probability measure). This extension
of conditional expectation is called a regular conditional probability
law:

Definition 8 (Regular conditional law): Let G ⊆ F be a sub-σ-
algebra and let Y be a random variable taking values in (S, A ).
A regular conditional probability law P : (A ×Ω) → [0, 1] is a
function so that
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1. For each B ∈ A , P(B, ·) is a version of the conditional
expectation E(1B(Y) | G ).

2. There is a G –measurable set E having Pr(E) = 1 so that for
every ω ∈ E, P(·, ω) is a probability measure.

In other words, a regular conditional probability law allows us
to do conditioning in the intuitive way – first conditioning on part
of the probability space and then working with a new “random”
probability law of some random variable.

A little bit of care is needed: regular conditional probability laws
do not always exist. However, when Y is standard Borel, they do:

Theorem 10: Regular conditional probabilities

If Y is standard Borel, and G is a sub-σ-algebra, a regular
conditional probability law PrY|G exists.

As a consequence, all the properties of expectations transfer to
conditional expectations.

Theorem 11: Conditional expectation props

The following general properties of conditional expectations
hold:

1. If X, Y are real valued random variables and X ≤ Y almost
surely, then

E[X | G ] ≤ E[Y | G ] a. s.

If further X = 0 a. s. and E[Y | G ] = 0 then Y = 0 a. s.

2. (Monotone convergence) If (Xj : j ∈N) are real-valued
random variables and 0 ≤ Xj ≤ Xj+1 for j ≥ 1 then

lim
j→∞

E[Xj | G ] = E[ lim
j→∞

Xj | G ] a. s.

Dominated convergence and Fatou’s lemma also follow.

3. (Jensen’s inequality) If ϕ : R→ R is convex, E|Y| < ∞,

ϕ(E[Y | G ]) ≤ E[ϕ(Y) | G ] a. s.

Proof. Using the existence of the regular conditional probability law,
(which exists for single rvrvs Y, pairs of rvrvs (X, Y), or sequences
(Xj : j ∈ N)), we simply apply the associated statement for the
deterministic expectation.
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Markov chains

Stochastic processes

We start by setting some nomenclature about (discrete time) stochas-
tic processes.

Definition 9 (Stochastic process): A stochastic process (Xj : j ≥ j0)
is a sequence of random variables taking values in a state space
(S, A ), which we will take to be a standard Borel space.

We refer to the indexing sequence (j ∈ Z : j ≥ j0) as time and
j0 is the initial time. Where it is not important, we will just take the
initial time j0 = 0. Stochastic processes are natural frameworks
for prediction and and uncertainty. They could describe a natural
process, such as the state of a physical object (such as a coin or a
dice) or system. It could represent a financial asset, such as a stock
price. It could be the state of a stochastic algorithm or an algorithm
that evolves in a random environment.

2 2 We may also wish to have the indexing
sequence be finite. Formally, we can
embed finite chains (Xj : j0 ≤ j ≤ n)
into infinite chains by just taking
Xk = Xn for all k > n, and in this
way assume wlog that all stochastic
processes we consider have infinite time
horizons.

Hence at a given time j, the process has a present state Xj. It also
has a past (Xk : j0 ≤ k ≤ j) and a future (Xk : k > j). It will be
helpful to be able to condition on the history (Xk : j0 ≤ k ≤ j) and
to discuss the probability distribution of the future. So, we define
Fj = σ(Xk : j0 ≤ k ≤ j), which is informally all the information that
can be learnt from the history of the process.

The sequence (Fj : j ≥ 0) is a naturally increasing in j, in that
F0 ⊆ F1 ⊆ · · · . Such an increasing sequence is just referred to as a
filtration:

Definition 10: A filtration (Fj : j ≥ j0) is a sequence of σ-algebras
with the property that they are increasing, so for all j ≥ j0,
Fj ⊆ Fj+1. A stochastic process (Xj : j ≥ j0) is adapted to a
filtration if Xj is Fj–measurable for all j ≥ j0. Any stochastic
process also gives rise to a filtration, its natural filtration, just by
setting Fj = σ(Xk : j0 ≤ k ≤ j).

There are a few measure-theoretic aspects of stochastic processes,
which are helpful to understand for proofs Stochastic process takes
values in (S∞,⊗∞

1 A ), which remains a standard Borel space. Hence,
in complete generality (provided the state space (S, A ) is standard
Borel), the future (Xk : k > j) is a standard Borel random vari-
able. Hence by the existence of regular conditional probability laws,
conditionally on the past Fj, there is a probability law describing
its future. Furtheremore, the product σ-algebra ⊗∞

1 A is generated
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by cylinder sets, which depend on only finitely many coordinates.
Hence, we have

Theorem 12: FD Marginals

The law of a stochastic process (Xj : j ≥ j0) is determined by
its finite-dimensional marginals meaning the (infinite family) of
laws of the finite–dimensional vectors (Xj : k ≥ j ≥ j0) where
k runs over all N.

The Markov property
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A Markov chain is a stochastic process (Xj : j ≥ j0) that restricts
the amount of dependence the law of the future can have on the past.
Specifically, it satisfies the Markov property:

Definition 11 (Markov property): A stochastic process (Xj : j ≥ j0)
satisfies the Markov property if for j ≥ j0, the law of Xj+1 given
Fj equals the law of Xj+1 given Xj, almost surely. If a stochas-
tic process has the Markov property, it is called a Markov chain.

In a Markov chain, there are therefore conditional probability laws
PrXj+1|Xj , describing the law of the next step of the Markov chain
given the present step. Moreover, it turns out that to define these
Markov chains, and to work with them, we just need to define these
conditional probabilitiy laws. So, we define:

Definition 12: A Markov kernel K : S×A → R is a function that
satisfies:

1. For every x ∈ S, K(x, ·) is a probability measure.

2. For every A ∈ A , K(·, A) is measurable.

The Markov kerernel encodes precisely the same data as the regu-
lar conditional probability law, which is to say that there is a kernel
Kj so that PrXj+1|Xj = Kj(Xj, Xj+1) a. s. The kernels may depend
on time, in which case the Markov chain is time inhomogeneous.
However, the more important case is when the all the kernels are the
same:

Definition 13: A Markov chain (Xj : j ≥ j0) is time homogeneous
if there is a single Markov kernel K so that for all j ≥ j0 and all
A ∈ A

Pr[Xj+1 ∈ A | Fj] = K(Xj, A) a. s.

Hence for a time homogeneous Markov chain, its probability law
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is completely determined by the law of its initial state and its Markov
kernel. It is frequently helpful to change the law of the initial state,
or moreover to consider the law of the Markov chain started from a
fixed initial condition. So we set:

Definition 14: In the special case that Pr is simply the law of
some Markov chain (Xj : j ≥ j0), we use the notation Prx (for
a state x ∈ S) to refer to the law of the Markov chain with the
same Markov kernels but with Xj0 = x.

This notation is a helpful shorthand for switching between dif-
ferent starting conditions. Note that this notation is a little bit dan-
geroous in the case that multiple Markov chains are in consideration,
or there is additional randomness in play.

Example 5: Random walk

One of the most fundamental Markov chains, this is the pro-
cess of partial sums of independent random variables. That
is, suppose that (Xj : j ≥ 1) are independent real valued ran-
dom variables (or Rd–valued, or even taking values in some
group). Now, define Sj = ∑

j
k=1 Xk. Then (Sj : j ≥ 0) is a

Markov chain. If (Xj : j ≥ 1) are identically distributed, then
this is a time-homogeneous Markov chain.

Example 6: Sampling without replacement

Suppose that S is a finite set of size n. Define a sequence

(Xj : 1 ≤ j ≤ n) by letting X1
law
= Unif(S) and then induc-

tively letting Xj+1 be sampled uniformly from all elements of
S not yet chosen in the set {X1, X2, · · · , Xj}.
Then the sequence (Xj : 1 ≤ j ≤ n) is not a Markov chain,
as the law of Xj+1 does not just depend on Xj but on the en-
tirety of the history of the process.
On the other hand, if we set Aj = {X1, X2, · · · , Xj} for all
1 ≤ j ≤ n, then sequence (Aj : 1 ≤ j ≤ n) is a Markov chain
on 2S. Morevoer, it is even time-homogeneous, in that we can
use the Markov kernel

K(A, {B}) =


1

n−|A| if |B \ A| = 1,

1 if A = B = S,

0 else.

This can then be extended uniquely to a Markov kernel.
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Example 7: Discrete Ornstein-Uhlenbeck process

Suppose that (Zj : j ≥ 1) are independent identically dis-
tributed real valued random variables, and let α ∈ (0, 1) be
fixed. Let X0 have any real-valued distribution. Define induc-
tively Xj+1 =

√
1− αXj +

√
αZj+1. Then (Xj : j ≥ 0) is a

Markov chain.

As a stochastic process is determined by its finite dimensional
marginals (Theorem 12), it is helpful to be able to describe the finite
dimensional marginals of a Markov chain.

Theorem 13: Chapman Kolmogorov

A stochastic process
(
Xj : j ≥ 0

)
is a Markov chain if and

only if there are are Markov kernels {Kj : j ≥ 0} and an
initial law µ so that for any k ∈ N and any {Ej ∈ A } for
j ≥ 0

Pr(∩k
j=j0{Xj ∈ Ej})

=
∫
E0

· · ·
∫
Ek

Kk−1(xk−1, dxk)Kk−2(xk−2, dxk−1) · · ·K0(x0, dx1)µ(dx0).

The proof in one direction is just induction and the Markov prop-
erty. In the other direction, from Theorem 12, the finite-dimensional
marginals determine the law and moreover it should just be checked
that the Markov property follows from the claim.

Exercise 1 (Markov): Show that for a stochastic process (Xj :
j ≥ 0) on a standard Borel space, the following are equivalent
characterizations of a Markov chain:

1. For any j ≥ 0, the law of the future (Xk : k > j) conditioned
on the past (Xk : k ≤ j) is the same as the law of the future
conditioned on the present Xj.

2. For any j ≥ 0, conditioned on the present, the future and the
past are independent.

THF/CS Markov chains

The case of time homogeneous Markov chains with a finite state
space THFS are especially important, and they are a good starting
place for developing the theory of Markov chains. Some of this also
extends more generally to time homogeneous countable state Markov
chains (TFCS). In these cases the Markov kernel K can be encoded
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entirely in a square matrix (which will be infinite in the countably
infinite case, but otherwise have the dimension of the cardinality of
the state space)

Definition 15: The transition probability matrix or tpm P indexed
by the elements of S) of a THFS (Xj : j ≥ j0) is given by

Pa,b = Pr(Xj+1 = b | Xj = a).

The transition probability matrix P has some structure, owing
to the fact that it must be a probability. These properties together
define:

Definition 16: A matrix P indexed by the elements of S is called
stochastic if:

1. All entries are non-negative.

2. The row-sums of the matrix are all 1.
3 See Persi Diaconis, Susan Holmes,
and Richard Montgomery. “Dynamical
Bias in the Coin Toss”. In: SIAM Review
49.2 (2007), pp. 211–235. doi: 10.1137/
S0036144504446436. eprint: https://
doi.org/10.1137/S0036144504446436.
url: https://doi.org/10.1137/
S0036144504446436

Example 8: Lazy coin

The state space S = {H, T} is a two-element space. The sim-
plest probabilistic model for a sequence of coin flips is to take
(Xj : j ≥ 0) iid Unif({H, T}). However, if you actually ask
a group of 100 students to do this, you observe the follow-
ing. The first time people flip the coins, it is generally pretty
close to uniformly distributed. However, if you direct them to
hold then coin, and (without turning it over) flip it again, you
find that a substantial majority get a different side the second
time than the first. (For a well-researched contrasting point of
view, see 3

0).
You can model this with a Markov chain having tpm:

P =

H T
0.49 0.51 H
0.51 0.49 T

With the transition matrix, we can turn probabilistic questions into
simple matrix computations.

Definition 17 (Row vector formalism): For Markov chains, it is
convenient to identify the pmfs of random variables on the
state space S with row vectors of non-negative numbers sum-
ming to 1. We will overload the notation, relying on context
whether a law on S is being treated as a measure, a row vector

https://doi.org/10.1137/S0036144504446436
https://doi.org/10.1137/S0036144504446436
https://doi.org/10.1137/S0036144504446436
https://doi.org/10.1137/S0036144504446436
https://doi.org/10.1137/S0036144504446436
https://doi.org/10.1137/S0036144504446436


MATH 547 Lecture notes Lecture Notes | 21

or a pmf. For a Markov chain (Xj : j ≥ j0) its initial distribution
is the law of Xj0 .

Theorem 14: Matrix formalism

We formulate the below with j0 = 0 without loss of gen-
erality, and we set µ to be the initial distribution of a THFS
Markov chain (Xj : j ≥ 0) having tpm P:

1. (Chapman-Kolomogorov) For any n ∈N and any states
aj ∈ S for 0 ≤ j ≤ n

Pr(Xj = aj, ∀ 0 ≤ j ≤ n) = µa0 Pa0,a1 Pa1,a2 · · ·Pan−1,an .

2. (n-step transitions) For any n ∈N, the process (Xjn : j ≥ 0)
is again a Markov chain on S, and its tpm is given by Pn

(meaning matrix multiplication).

3. (marginal law) For any j ∈N, the law of Xj is given by
µPj, meaning the vector matrix multiplication.

Proof. For the first claim, by Bayes’ law

Pr(Xj = aj, ∀ 0 ≤ j ≤ n) = Pr(Xn = an | Xj = aj, ∀ 0 ≤ j ≤ n− 1)

× Pr(Xj = aj, ∀ 0 ≤ j ≤ n− 1).

By the Markov property

Pr(Xn = an | Xj = aj, ∀ 0 ≤ j ≤ n− 1) = Pr(Xn = an | Xn−1 = an−1).

Finally by the definition of the tpm, we conclude

Pr(Xj = aj, ∀ 0 ≤ j ≤ n) = Pan−1,an Pr(Xj = aj, ∀ 0 ≤ j ≤ n− 1).

The proof now follows by induction.
For the second claim, on applying the first claim and summing

over all possible intermediate states

Pr(Xn = an | X0 = a0) = ∑
(aj)

Pa0,a1 Pa1,a2 · · ·Pan−1,an .

By the definition of matrix multiplication, we conclude

Pr(Xn = an | X0 = a0) = Pn
a0,an .

For the final claim, this follows similarly from the first claim.

We can also give a graphical representation of THFS Markov
chains, which can be helpful in understanding the behavior of small
chains.
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Definition 18 (Transition graph): A transition graph, associated to
stochastic matrix P is a directed graph having vertex set S and
edge set

{(ab) : Pa,b > 0}.

We further weight these edges by the value of Pa,b.

Example 9: Simple transition graph
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P =

L U R D
L 1.0 0 0 0
U 0.1 0 0.9 0
R 0 0.2 0 0.8
D 0 0 1.0 0

The states in the graph are labeled L, U, R, D for left, up,
right, down. One can visualize the state of a Markov chain
as a sequence of transitions on the transition graph:
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Stopping times and the Strong Markov property

A fundamental tool for the analysis of Markov chains, but also for all
stochastic processes, is the idea of a stopping time.

Definition 19: For a stochastic process
(
Xj : j ≥ j0

)
adapted to

filtration (Fj : j ≥ j0) (such as the natural filtration generated
by the stochastic proceses

(
Xj : j ≥ j0

)
), a stopping time τ is a

random variable taking values in {j ∈ Z : j ≥ j0} ∪ {∞} with
the property that for all j ≥ j0 the event {τ = j} is in Fj.

Informally, a random variable τ is a stopping time if we can tell
if τ has happened with the information available so far. Even more
informally, a criterion that helps you get off the bus at the right time
in a strange place is a stopping time – you can’t choose the last stop
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before it gets sketchy, if you do’t know when it gets sketchy.
The most important example of a stopping time is the following:

Definition 20 (Hitting Time): Let (Xj : j ≥ 0) be a stochastic pro-
cess. The hitting time or ("first passage time") of the A ⊆ S is

τA = inf
{

j ≥ 0 : Xj ∈ A
}

.

It is sometimes helpful to discard the case that τA = 0, and so
we also define

τ+
A = inf

{
j > 0 : Xj ∈ A

}
.

In the case that X0 ∈ A, this is called the first return time of the
process to A.

This is also the prototype of how to define a stopping time: it is
the first time something happens (in contrast, say, to the last time
something happens).

Exercise 2 (Stopping times): Show that the maximum and mini-
mum of two stopping times is again a stopping time.

Time homogeneous Markov chains are probabilistic state ma-
chines: the law of their future depends only their current state, and
neither how they got there (their past) nor even how long it took to get
there (since their law has no time dependence). So, if you run a time
homogeneous Markov chain up to the hitting time τx for some x ∈ S,
the law of the process (Xk+τx : k ≥ 0) should again be a Markov
chain started from x. This generalizes to any stopping time, and is
the content of the Strong Markov property.

Theorem 15: Strong Markov Property

Suppose that (Xj : j ≥ j0) is a time homogeneous Markov
chain adapted to a filtration (Fj : j ≥ j0) and that τ is a
stopping time. Then conditioned on {τ < ∞}, the law of
(Xk+τ : k ≥ 0) is again a time homogeneous Markov chain
with initial distribution given by the law of Xτ under the
conditional probability Pr(· | τ < ∞) and with the same
markov Kernel as (Xj : j ≥ j0).

Proof. It suffices to check the finite dimensional marginals of the
process (Yk : k ≥ 0) where Yk = Xk+τ (on the event τ < ∞), which
is to say we should verify Theorem 13 holds. So let

{
Ej ∈ A : j ≥ j0

}
be some events and let k ∈ N be fixed. The key idea is to decompose
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{τ < ∞} = ∪∞
`=j0
{τ = `}. Then on the event τ = `, using Theorem 13

Pr(∩k
j=0{Yj ∈ Ej} ∩ {τ = `})

= Pr(∩k
j=0{X`+j ∈ Ej} ∩ {τ = `})

=
∫
E′

· · ·
∫
Ek

K(xk−1, dxk)K(xk−2, dxk−1) · · ·K(x0, dx1)Pr(dx0).

The event E′ = {X` ∈ E0} ∩ {τ = `}. Define a measure µ on A by

µ(E0) =
∞

∑
`=j0

Pr({X` ∈ E0} ∩ {τ = `}).

Summing over all ` and using monotone convergence, we have

Pr(∩k
j=0{Yj ∈ Ej} ∩ {τ < ∞})

=
∫
E0

· · ·
∫
Ek

K(xk−1, dxk)K(xk−2, dxk−1) · · ·K(x0, dx1)µ(dx0).

Now observe that µ(·)/ Pr(τ < ∞) is nothing but the law of Xτ

under the conditional measure Pr(· | τ < ∞), and so we have shown
the claim.

Classification of states of a THCS chain

Throughout this section, we suppose S is a countable set, and P is a
transition probability matrix. The properties we develop here do not
depend on the initial distribution.

Definition 21 (Communication): Say that a state j is accessible from
a state i if there exists an m ∈ N such that Pm

i,j > 0. Say that
two states i, j ∈ S of a THCS Markov chain communicate, writ-
ten i ↔ j, if both are accessible from one another, i.e. if there
exist m, n ∈N such that,

Pm
i,j > 0 and Pn

j,i > 0.

Equivalently, two states communicate if and only if each state has
a positive probability of eventually being reached by a chain starting
in the other state.

Theorem 16: Communication

The relation ↔ is an equivalence relation on the state space.

Proof. The relation↔ is reflexive, symmetric, and transitive.

• (Reflexivity) i↔ i since p0(i, i) = 1 > 0
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• (Symmetry) i ↔ j =⇒ j ↔ i by definition 4 The vector with
|π|i = |πi| is still an eigenvector with eigenvalue 1.

• (Transitivity) i↔ j and j↔ i =⇒ i↔ k since,

Pm1+m2
i,k = Pr (Xm1+m2 = k | X0 = i)

≥ Pr (Xm1+m2 = k, Xm1 = j | X0 = i)

= Pr (Xm1 = j | X0 = i) · Pr (Xm1+m2 = k | Xm1 = j)

= Pm1
i,j Pm2

j,k

> 0

As a consequence, a tpm gives rise to a partition of the states of
the space into classes.

Definition 22 (Irreducibility): The relation ↔ partitions the state
space into disjoint sets called communication classes. If there
is only one communication class, then the chain is called irre-
ducible.

Example 10: A partition transition graph with 3 classes

Example of Communication Classes: G has 3 communication
classes,




































































































































Another Example
er

These are our first peak at describing the eventual behavior of a
Markov chain:

Definition 23: A state x ∈ S is recurrent if Prx(τ+
x < ∞) = 1.

Otherwise, the state is transient.
Recurrent states are further characterized as follows. A recur-
rent state x ∈ S is absorbing if Px,x = 1. A recurrent state x ∈ S
is positive recurrent if Exτ+

x < ∞. If Exτ+
x = ∞ then the state is

null recurrent.



MATH 547 Lecture notes Lecture Notes | 26

Thus if a Markov state in state x almost surely returns to state x,
the state x is recurrent.

Transience and recurrence have an equivalent characterization in
terms of the number of returns:

Theorem 17: Fundamental theorem of recurrence

For a state x, let Nx be the number of visits the Markov chain
makes to state x. The following are equivalent for a Markov
chain:

1. Prx(τ+
x < ∞) < 1 (i.e. the state x is transient)

2. ENx = ∑∞
k=0 Pk

x,x < ∞

3. Nx < ∞ a. s.

Moreover, under Prx Nx is geometrically distributed:
Prx(Nx = k) = (1− p)pk−1 for k ∈ N where p = Prx(τ+

x < ∞)

(or identically ∞ when p = 1).

Proof. The final distributional claim implies the equivalence the three
alternatives. From the Strong Markov property, on the event τ+

x <

∞, the law of (Xk+τ+x
: k ≥ 0) is once more Prx. Thus under Prx,

Nx − 1 has the law of the number of coin flips required to see a 0
in a sequence of iid Bernoulli(p) random variables, which is the
geometric random variable described.

As a consequence, transience and recurrence are class properties.

Definition 24: A property P of a state x ∈ S is a class property if
whenever x has P and x ↔ y, then y has P as well.

This implies that all states in a communication class share the
same class properties.

Theorem 18: Recurrence classes

Transience and recurrence are class properties.

Proof. As these properties are negations of one another, if suffices to
show that recurrence is a class property. Suppose that x is recurrent
and y communicates with x. We should show that y is recurrent.
From communication, there are numbers m, n ∈ N so that we can
access x from y in m steps and vice versa in n steps. Fix an ` ∈ N.
Let τ

(`)
x be the time of the `-th visit to x. Let E` be the event that the

Markov chain visits y between τ
(`)
x and τ

(`+1)
x . Let My be the number

of E` that occur.
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Now by the Strong Markov property

Pry(E` | τ
(`)
x < ∞) = Prx((Xk) visits y before returning to x) =: q > 0.

Then from recurrence Prx(τ
(`)
x < ∞) = 1. On the other hand, it could

be that it is not possible to get from y to x the first time. It does have
positive probability, and since by the Strong Markov property

Pry(τ
(`)
x < ∞ | τ

(1)
x < ∞) = 1,

we have that for all ` ∈N,

Pry(τ
(`)
x < ∞)

= Pry(τ
(`)
x < ∞ | τ

(1)
x < ∞)Pry(τ

(1)
x < ∞)

=: p > 0.

Putting everything together, we have shown

Pry(E`) = Pry(E` | τ
(`)
x < ∞)Pry(τ

(`)
x < ∞)

≥ pq > 0

As this holds for all ` ∈N, we have

EyNy ≥ Ey My = ∞.

From Theorem 17, the claim follows.

Exercise 3 (Positive recurrence): Show that positive recurrence is
a class property.

Exercise 4 (Reachability): Show that if a state x is recurrent, then
Nx = ∞ a. s.. Show furthermore that if the chain is irreducible,
then for any states x, y Pry(τx < ∞) = 1.

Exercise 5 (Finite implies Positive): Show that if a recurrent class
is finite then it is positive recurrent.

As a consequence null recurrence is exclusively in the domain
of infinite chains. We will delay more discussion of null-recurrence
versus positive-recurrence to after we have introduced martingales.

Exercise 6 (Transients): Suppose that B is a recurrent class. Let
B′ ⊂ S be the union of all states that can access B. Show that
all states in B′ \ B are transient.

A further class property is that of periodicity.
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Definition 25 (Period): The period of a state x is the greatest com-
mon divisor of the set

{n ∈N : Pn
x,x > 0}.

A state is aperiodic if it has period 1.

Theorem 19: Periodic classes

The period of a state is a class property, which is to say all
states in a communication class have the same period.

Proof. Suppose a state x has period p and a state y has period q. If
x ↔ y then there are m, n ∈ N so that the chain access y from x in
m steps and x from y in n steps. It follows by travelling from x → y,
from y → y ` times and then y → x in n steps. Hence p divides
m + n + `q for all ` ∈ N. It follows that p divides m + n (taking
` = p). Hence p also divides q (taking ` = 1). By a symmetric
argument, q divides p. So p = q.

Example 11: Periods
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This Markov chain has four classes, with periods 1,3,1 and 4,
going from left to right.

Exercise 7 (Lazy FTW): One way to break periodicity is to in-
troduce laziness. For a THCS Markov chain with tpm P,
and a laziness parameter p, we can define a new tpm Q =

p Id+(1− p)P, which describes, in words, at each step flipping
a coin with success probability p. If heads, stay put, if tails,
take a step from the original chain.
If p ∈ (0, 1), the resulting chain will always be aperiodic. Show
that the lazy chain (Yn : n ≥ 0) has the following alternative
description in terms of the original chain (Xn : n ≥ 0).
Let (Tj : j ≥ 1) be iid Geom(p) random variables on {1, 2, 3 · · · }
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(so Pr(Tj = k) = pk−1(1− p)) independent of (Xn : n ≥ 0).
For any n ≥ 0 let Nn := max{k : ∑k

1 Tj ≤ n}, where if the set
is empty we take Nn = 0. Then (XNn : n ≥ 0) is THCS Markov
chain with with tpm Q and the same initial distribution as Y.
Hint: think of a Markov chain on state space S × {0, 1} which is
just iid Bernoulli(p) in the second coordinate, and only makes P-
transitions in the first coordinate when the second is 1, and use the
strong Markov property.

Stationary distributions

Our first major result on Markov chains will concern their conver-
gence in distribution as time tends to infinity of the distribution of a
Markov chain. The limit distribution of the chain will be a stationary
distribution.

Definition 26 (Stationary Distribution): A probability measure π

is a stationary distribution for a THCS Markov chain with tpm
P if πP = π, which is to say that π is an eigenvector of P of
eigenvalue 1. In the case |S| = ∞, we reserve eigenvector for
vectors v satisfying ‖v‖1 := ∑s |vs| < ∞ and vP = v.

Note that beyond being eigenvectors, stationary distributions must
furthermore be non-negative vectors which sum to 1.

Hence the set of stationary distributions of a THCS chain form a
polytope (meaning a convex hull of a set of a finite set). The number
of extreme points of this convex hull are in some sense the number of
non-equal stationary distributions.

Theorem 20: Stationary distributions

For any positive recurrent class B, the formula

πB(x) :=


1

Exτ+x
if x ∈ B.

0 otherwise.

defines the unique stationary distribution with support con-
tained in B, and the set

{πB : B is a positive recurrent class}

are the extreme points of the set of stationary distributions.
This is also a basis of left eigenvectors of eigenvalue 1 of P.

Note that 1 is always a right eigenvector of P, as the all-1 vector
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is a right eigenvector of P of eigenvalue 1, and hence in the |S| < ∞
case, there is always a stationary distribution (and a recurrent class).

Corollary 1: If |S| < ∞ then there is always a stationary distri-
bution, and moreover the dimension of the space of stationary
distributions is equal to the number of recurrent classes.

Note that infinite chains, which can be null recurrent, do not need
to have stationary distributions. Moreover

Corollary 2: An irreducible THCS Markov chain is positive re-
current if and only if it has a stationary distribution π.

Example 12: Edge weighted graphs

In general, finding the stationary distribution of a chain is
complicated. It can be helpful to have a family of examples
where there is a simple rule to find the stationary distribu-
tions.
One way to do this is to take an undirected, connected graph
(V, E), and then choose edge weights w : E → (0, ∞). Extend
this to a vertex weight function w(x) := ∑y∼x w({x, y}) where
∼ denotes adjacency (i.e. x ∼ y iff {x, y} ∈ E). Then define a
tpm by

Px,y =
w({x, y})

w(x)
.

The (unique) stationary distribution of such a Markov chain
is always π(x) := w(x)

∑y w(y) .

So for example:




































































































































Eg Simple random walk on an edgeweightedgrapher

1 Think of the numbers as an attractiveness

2
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g

w 17 8 E Zo ko check PET1 W 2 7
3 5 4

w 137 7 unassigned
W 4 4

has stationary distribution ( 8
20 , 7

20 , 1
20 , 4

20 ).

Example 13: Doubly stochastic

A doubly stochastic matrix M is one for which both M and
Mt are stochastic (recall Definition 16). For a finite doubly
stochastic matrix, the all-1 vector is both a left and a right
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eigenvector, and hence Unif(S) is a stationary distribution.

Example 14: Reflected biased RW on Z

Let S = N0. Let p ∈ (0, 1).

Xj =


1, if Xj−1 = 0, else:

1 + Xj−1, with Pr(· | Fj−1) = p.

−1 + Xj−1, with Pr(· | Fj−1) = 1− p.

.

In words, the process jumps to the right with probability p,
left with probability (1− p), and jumps to 1 from 0 determin-
istically (this is the reflected part). The “biased” refers to the
fact that p may not be 1

2 .
We shall show that when p > 1

2 , this Markov chain is tran-
sient, when p = 1

2 the process is null-recurrent and when
p < 1

2 this process is positive recurrent.
We can check the positive recurrent part here, as from Theo-
rem 20, it suffices to find a stationary distribution. To do this,
we just try to solve for a left eigenvector v of P of eigenvalue
1. Set, arbitrarily v0 = 1− p. We now write the eigenvector
equation. At 0, these equations are exceptional:

v1P1,0 = v0,

and so v1 = 1. Generally, for k ≥ 1

vk−1Pk−1,k + vk+1Pk+1,k = vk.

When k = 1, these equations are exceptional, and we get

v2(1− p) = 1− (1− p),

and so v2 = p
1−p . By induction, we can check for all larger

k, vk+1 = pk

(1−p)k . As this series is summable for p < 1
2 , we

have constructed a stationary distribution (after dividing by
its sum).

To prove Theorem 20, we need a few general lemmas about sta-
tionary distributions.

Lemma 6: Suppose v is a left eigenvector of tpm P with eigen-
value 1. Then

1. For any transient state x, vx = 0.
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2. The restriction of v to any communication class is again an
eigenvector of eigenvalue 1.

3. The absolute value |v| (meaning the vector in which we have
taken the absolute value of every entry) is an eigenvector of
eigenvalue 1.

4. If v is a stationary distribution, then for any recurrent class
B such that v(B) > 0, v does not vanish on B.

5. For a recurrent class B, there is at most 1 stationary
distribution v that is supported on B.

Proof. 1. By the eigenvector property, we have that vPn = v for all n,
or in other words for all states x

vx = ∑
s∈S

vs Prs(Xn = x).

If x is transient, then Prx(Xn = x) → 0 as n → ∞ as by Theorem
17, the whole sum in n is finite. Hence it follows Prs(Xn = x) also
tends to 0 as n → ∞ for any state s which is accessible from x (as
otherwise we could lower bound Prx(Xn+m = x) for some fixed
m by first bounding below the probability of traveling x → s in m
steps and then s→ x in n steps.

2. For the second point, let B be any communication class. If B is
transient, there is nothing to show by the first point. Otherwise
if B is recurrent, then if we let B′ be all states which can access B,
B′ \ B are all transient states (see Exercise 6). Let w be the restric-
tion of v to B. Let x be any state in S. Then

wx = vx

= ∑
s∈S

vsPs,x by the eigenvector property of v

= ∑
s∈B′

vsPs,x as elements s /∈ B′ have Ps,x = 0

= ∑
s∈B

vsPs,x by v vanishes for transient states

= ∑
s∈B

wsPs,x.

Thus w is again an eigenvector.

3. If v = 0 the claim is trivial. By renormalizing the eigenvector v, we
may assume that ∑x |vx| = 1. Then for any x ∈ S

|vx| =
∣∣∑

s
vsPs,x

∣∣ ≤∑
s
|vs|Ps,x. (1)
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Suppose there is strict inequality for any x. Then summing in x

1 = ∑
x
|vx| < ∑

x,s
|vs|Ps,x.

Using that P is stochastic, if we peform the sum over x first, we
conclude

∑
x,s
|vs|Ps,x = ∑

s
|vs| = 1.

This is a contradiction, and so we must have equality in (1) for all
x ∈ S.

4. As v(B) > 0, there is a state x ∈ B with vx > 0. Now for any other
s ∈ B, there is an m ∈N so that Pm

x,s > 0. Hence

vs = ∑
y

vyPm
y,s ≥ vxPm

x,s > 0.

5. Suppose that v, w were two stationary distributions on B. Then
both must be supported on all of B, by the previous point. Hence
for any state x ∈ B, we can choose a nonzero linear combination
of v, w that vanishes at x. This linear combination u is an eigenvec-
tor of eigenvalue 1. If |u| is not identically distributed, we could
renormalize to make a stationary distribution supported prop-
erly within B, but this is impossible, and so |u| = 0 identically.
Thus u and v are proportional to each other. As they are stationary
distributions, they must be equal.

Exercise 8 (Null recurrence): Show that if a state x is null-
recurrent and π is a stationary distribution, then πx = 0.
Hint: use the occupation time idea from the next proof. The follow-
ing application of the strong law of large numbers might be helpful: if
(Xj)

∞
1 are iid non-negative random variables having EX1 = ∞, then

1
n ∑n

j=1 Xj
a.s.−−−→

n→∞
∞.

We can now show the proof of Theorem 20.

Proof. The main point here is to show that πB is indeed a stationary
distribution. Let y ∈ B be fixed and define, for any m and any x

v(m)
x =

1
m

m

∑
j=1

Pry(Xj = x),

which is the expectation fraction of time that the Markov chain
spends in state x. Observe that if we let τ

(`)
x be the `-th arrival times

of the chain to x (with τ
(1)
x = τ+

x ) then we also have for all m ≥ τ
(1)
x

m

∑
j=1

1Xj=x = max{` : τ
(`)
x ≤ m}.
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By the Strong Markov property, {τ(`+1)
x − τ

(`)
x : ` ∈ N} are iid.

Hence, by the strong law of large numbers

τ
(`)
x
`

a.s.−−−→
`→∞

Exτ+
x ,

and so we have Pry–almost surely,

1
m

max{` : τ
(`)
x ≤ m} a.s.−−−→

m→∞

1
Exτ+

x
.

By dominated convergence,

v(m)
x → 1

Exτ+
x

.

Note that v(m) is clearly a probability distribution as

∑
x

v(m)
x = Ey

1
m

m

∑
j=1

∑
x

1Xj=x = 1.

Furthermore,

(v(m)P)x =
1
m

m

∑
j=1

∑
w

Pry(Xj = w)Pw,x

=
1
m

m

∑
j=1

Pry(Xj+1 = x),

and so

∑
x
|(v(m)P)x − v(m)

x | ≤
2
m

.

It follows on taking the limit that πB is a stationary distribution.
The remainder of the claims now follow from Lemma 6:

1. By part 5, for every positive recurrent class B, there is exactly 1
stationary distribution supported on B.

2. An extreme point of the set of stationary distributions must be
supported on a single positive recurrent class: if not, every re-
striction of it to a positive recurrent class is (after renormalizing) a
stationary distribution, and hence it would be proper convex com-
bination of other stationary distributions (we have implicitly used
Exercise 8. Conversely, there is exactly 1 stationary distribution for
every class, and so the extreme points are exactly the stationary
distributions.

3. The claim for the geometric multiplicity is similar.
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Example 15: Ehrenfest Urn

Imagine two closed chambers L and R containing n particles
in total. Let (Xj : j ≥ 0) denote the number of particles in the
L chamber. At every moment in time, a particle will either
move from L to R or from R to L. The probability the particle
moves from L to R in the j-th step is proportional to Xj−1,
which is to say

Xj =

1 + Xj−1, with Pr(· | Fj−1) =
Xj−1

n ,

−1 + Xj−1, with Pr(· | Fj−1) =
n−Xj−1

n .

Then this chain has stationary distribution Binom(n, 1
2 ) as can

be checked by the following computation:
for any k ∈ {0, 1, 2, · · · , n} ,

2−n
(

n
k + 1

)
k + 1

n
+ 2−n

(
n

k− 1

)
n− (k− 1)

n

= 2−n
((

n− 1
k

)
+

(
n− 1
k− 1

))
= 2−n

(
n
k

)
.

Furthermore, as the chain is irreducible, this is unique.
This chain has its origins in the theory of statistical me-
chanics. If you view the chain as describing particles of gas
bouncing around the room, you can ask what is the proba-
bility the gas were to entirely travel to one side of the room,
hence suffocating all its inhabitants by pure spiteful random-
ness. In a purely random theory of gases (such as in the toy
model of the Ehrenfest Urn), that can and does happen, pro-
vided we wait long enough. The fraction of time the system
spends in that state however, is 2−n. If n is large enough (say
like 1023), you’re going to be waiting for a long time. . .

Convergence to stationarity

The first main highlight of this course is the Markov Chain conver-
gence theorem. Returning to one of our first examples:

Example 16: Lazy coin

(Continuing on Example 8) The state space S = {H, T} is a
two-element space. We will suppose that due to low effort
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flipping, the transition probability is

P =

H T
0.1 0.9 H
0.9 0.1 T

.

If one starts with initial distribution δH , then the law of the
first step is 0.1δH + 0.9δT , which is therefore very far from a
fair flip. However, if lazy-flipper continues,

P10 ≈

H T
0.554 0.446 H
0.446 0.554 T

and

P100 ≈

H T
0.5000000001 0.4999999999 H
0.4999999999 0.5000000001 T

So high powers are converging (and in fact are converging
exponentially quickly) to a 2× 2 matrix which is the constant
1
2 . Hence, regardless of whether we start in an H configura-
tion or in a T configuration, the distribution of the chain after
100 steps is wihin 8 digits of accuracy to a perfect coin flip.
Note that ( 1

2 , 1
2 ) is the stationary distribution.

So this example showed that raising a certain tpm to a high power
produced a matrix whose every row is the same, which is to say
the distributions of the Markov chain from any initial distribution
is always the same. Now there are some obstructions to a Markov
having this behavior. The class of chains for which the same behavior
shown in Example 16 still holds.

Definition 27 (Ergodic): Say a THCS Markov chain is ergodic if it
is irreducible, aperiodic, and positive recurrent.

Theorem 21: Markov chain convergence

In an ergodic THCS Markov chain (Xj : j ≥ 0), there is a
unique stationary distribution π, and for any initial distribu-

tion on X0, Xj
law−−→

j→∞
π.

To formulate this convergence, it is helpful to use the total variation
metric.
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Definition 28 (Total variation): The total variation metric between
two laws µ, ν on S dTV(µ, ν) is

dTV(µ, ν) =
1
2 ∑

x∈S
|µx − νx|.

For random variables X, Y taking values on S, we set dTV(X, Y)
to be the total variation distance between the laws of X and Y.

The total variation metric is the ideal way to measure the distance
between distributions on countable spaces (in contrast, it tends to be
too strong of a metric outside of discrete contexts). It admits many
different representations:

Theorem 22: TV metric

The total variation metric on a countable space S admits the
following representations:

1. For any laws µ, ν,

dTV(µ, ν) = sup
A∈A

|µ(A)− ν(A)|.

2. For any laws µ, ν,

dTV(µ, ν) = inf
(X,Y)

Pr(X 6= Y)

Here the infimum is over all random variables (X, Y)
taking values in S× S such that X has law µ and Y has
law ν. Such a construction of a joint law is called a
coupling of the laws µ, ν.

Furthermore, on a countable space, convergence in total vari-
ation metric is equivalent to weak convergence.

The main tool that we need is the following:

Lemma 7: In an aperiodic, irreducible THCS Markov chain, for
any pair of states x, y there is an n ∈ N so that for all m ≥ n,
Pm

x,y > 0.

Proof. It suffices to show the claim for the case that x = y, as this then
leads to the claim for x 6= y by decomposing the path from x → y
of length m + k into a path x → x of length m and a path x → y
of length k (which exists by irreducibility). For the case x → x, by
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definition of aperiodicity, the greatest common divisor of the set

R := {m : Pm
x,x > 0}

is 1. Now note R has the property that if `, r ∈ R, so is `+ r ∈ R.
The remainder of the proof requires a little bit of number theory.

We need that given the greatest common divisor of R is 1 and that
R is closed under addition, it actually follows that there is an n suf-
ficiently large so that for all m > n, m ∈ R, which completes the
proof.

Since R has greatest common divisor 1, there is some finite list of
numbers {a1, a2, · · · , ak} ⊆ R with greatest common divisor 1. By
Bézout’s identity, there are therefore integers {b1, b2, · · · , bk} (at least
one of which is negative) so that

a1b1 + · · ·+ akbk = 1.

Hence letting b̄ = max{−bj : 1 ≤ j ≤ k},

a1(b1 + b̄) + · · ·+ ak(bk + b̄) = 1 + b̄(∑
k

ak) ∈ R

We also have r = b̄(∑k ak) ∈ R. And so we have shown there is an
r ∈ R so that r + 1 ∈ R as well.

Now every integer m > r2, when divided with remainder by r
has m = k(r − 1) + ` for some ` ∈ {0, · · · , r− 2} and k ≥ (r − 1).
Then m = (k− `)(r− 1) + `r is a positive linear combination of r and
(r− 1), and so we have shown every m larger than r2 is contained in
R.

The next idea concerns building a Markov chain out of two in-
dependent Markov chains. Let

(
Xj : j ≥ 0

)
and

(
Yj : j ≥ 0

)
be two

independent copies of a Markov chain with a tpm P. Then the pro-
cess ((Xj, Yj) : j ≥ 0) is still a Markov chain, on S × S and so has
a tpm P ⊗ P (the Kronecker product of the two tpms), which has
entries given by

(P⊗ P)(x,y),(a,b) = Px,aPy,b.

Note that for any n ∈N

(P⊗ P)n = Pn ⊗ Pn, (2)

as they describe the transitions in two independent chains.

Lemma 8: If P is ergodic, then P ⊗ P is irreducible and recur-
rent.
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Proof. We need to show that it is possible for any pair of states (x, y)
to access any other pair of states (a, b). By Lemma 7, there is an n
sufficiently large that for all m > n

Pm
x,a > 0 and Pm

y,b > 0.

Now note that by (2) (P⊗ P)m
(x,y),(a,b) > 0. Hence P⊗ P is irreducible.

Now to check recurrence, it suffices to show that for any state x

∞

∑
n=1

(P⊗ P)n
(x,x),(x,x)

= (Pn
(x,x))

2

= ∞.

Now in fact from positive recurrence,

1
n

n

∑
j=1

Pj
(x,x) →

1
Exτ+

x

(see the proof of Theorem 20), which implies that the sequence
{Pj

(x,x) : j ≥ 1} is larger than 1
2Exτ+x

infinitely often. Hence the re-
currence follows.

The proof of the Markov chain convergence theorem now follows
from a clever trick, known as the Doeblin coupling argument:

Proof. From Theorem 20, there is a unique stationary distribution
π for the ergodic chain (Xj : j ≥ 0). Thus define an inependent
Markov chain (Yj : j ≥ 0) with initial distribution π, and note that by

stationarity Yj
law
= π for all j ≥ 0. Let A ⊂ S× S be the diagonal (i.e.

the set of all (x, x) for x ∈ S). By Lemma 8, the chain ((Xj, Yj) : j ≥ 0)
is irreducible and recurrent. Hence the stopping time τA < ∞ almost
surely (see Exercise 4).

Now define a process

Zj :=

(Xj, Yj) if j < τA

(Yj, Yj) if j ≥ τA.

Then the first coordinate of Zj is a Markov chain with tpm P and the
same initial distribution as X0 (this takes some reflection – consider
computing the finite dimensional marginals, in time). Then we have

Pr((Zj)1 6= Yj) ≤ Pr(τA > j).

Since (Zj)1 has the same law as Xj, we have shown that

dTV(Xj, Yj) ≤ Pr(τA > j),

(see Theorem 22) which tends to 0 as j → ∞ by the almost sure
finiteness of τA. As Yj has law π, this completes the proof.
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Remark 1 (T): e general principle used here was to construct a
probability space on (S× S)∞, with the properties that:

1. the stochatic process in the first coordinate had the law of
Markov chain (Xn : n ≥ 0);

2. the second coordinate (Yn : n ≥ 0) had the law of a
stationary Markov chain with the same transition probability
matrix;

3. and after the two chains collide, i.e. Xn = Yn, they remain
together for all time.

Then if τ is the hitting time of the chain to the diagonal
{(x, y) ∈ S× S : x = y},

dTV(Xn, Yn) ≤ Pr(τ > n).

There can be many ways to construct this probability space,
and some are better than others, in the sense that τ happens
faster. It’s actually not necessary that the pair ((Xn, Yn) : n ≥ 0)
form a Markov chain – if they do, we would call the coupling
of the two chains Markovian. It is easier, however. It’s also not
necessary that the chains be independent before their coupling
time, and to make faster-coupling Markov chains, we might
actually prefer to do something non-independent. We’ll do this
with the card shuffling example below.

Exercise 9 (Strong Law of Large Numbers for Markov Chains): If
(Xn : n ≥ 0) is a finite state, time-homogeneous, aperiodic, ir-
reducible Markov chain and r is a bounded and real-valued
function, then

lim
n→∞

r (X1) + · · ·+ r (Xn)

n
= E[r(X)] a.s.

where E[r(X)] = ∑j r(j)πj. Hint: the chain is not i.i.d, but succes-
sive excursions between visits to the same state are independent.

Example 17: Card shuffling

A rich class of markov chains with interesting mixing proper-
ties are card shuffling Markov chains. The state space in such
a chain is the set of all permutations of an underlying finite
set Sm. Formally we can represent these as bijections from
{1, 2, · · · , m} to itself. Concisely, we can represent these in
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“one-line” notation as a list of numbers, for example:

937452618 ←→ π(1) = 9, π(2) = 3, · · · , π(9) = 8,

just recording in the j-th location the image of j.
This has a group structure: for two permutations A, B ∈ Sm

the permutation AB is given by first applying B and then A
(i.e. it is the composition of the two permutations). So we can
define a Markov chain on Sm by choosing a step distribution
µ on Sm, and then forming an iid sequence (Uk : n ≥ 0)
sampled from µ. The Markov chain is given by (for all n ≥ 0)

Xn+1 = Un+1Xn.

For example, if we let µ be the uniform measure over the set
of transpositions, which is to say permutations that swap two
elements and leave the rest fixed, then this is called the ran-
dom transposition chain. In one-line notation, this just means
we randomly swap two numbers at each step.
Tying it back to card shuffling, this would have the interpre-
tation as the Markov chain which at each step selects two
cards from the deck uniformly at random and then inter-
changes them.
If that sounds painful to implement, you might try the top-
to-random shuffle, in which you take the top card and then
insert it in a random location in the deck.
Now it turns out that for any choice of µ, this Markov chain
will have stationary distribution Unif(Sm). If in addition the
support of µ generates Sm – which is to say using the steps
which have positive probability under µ, can be composed
to generate any permutation – then the Markov chain is irre-
ducible.
So the question is here is not really do these chains converge,
but how fast?

Exercise 10 (Always uniform): Show that for any choice of µ, the
Markov chain defined this way is stationary with respect to
uniform measure on Sm.

Remark 2 (T): quantify the rate of convergence, we might look at
the mixing time. For finite chains S

Mixing-Time = max
x∈S

inf{n ∈N : dTV(δxPn, π) ≤ 1
2}.
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Here δx is the row vector with mass 1 at x and 0 elsewhere. So
dTV(δxPn, π) is the distance to stationarity of a Markov chain
with initial state x and tpm P. We then look at the worst-case
starting point. The 1

2 is arbitrary, but it also does not matter so
much for a coarse understanding of the rate. One can check
(using properties of total variation) that replacing 1

2 by ( 1
2 )

k

leads to a mixing time which is bounded above by k-times the
definition above.

Lemma 9: Given two copies of the random transposition chain
(Xn : n ≥ 0) and (Yn : n ≥ 0), there is a coupling so that the
first time τ that Xn = Yn satisfies

Eτ ≤ m(m− 1)(log m + 1).

Proof. In the one-line representation, we can represent the chain as
choosing two positions and swapping the numbers in those positions
at each step. We say the two permutations are aligned in a position i
if they have the same value in that position. Now we divide the set of
transpositions into the set A contain an aligned entry and the set U
for which both are unaligned.

Now we choose the transpositions U, V to be applied to X, Y re-
spectively by doing the following:

1. Flip a coin with probability p = |A|/(|A|+ |U |).

2. If heads, we sample uniformly at random one transposition from
the set A and set U = V .

3. If tails, we sample the U and V independently and uniformly at
random from U .

Using this strategy, we never decrease the number of alignments.
Moreover, when we sample the from U we have a chance to add 1
or 2 alignments. If we have k unaligned spots, the probability that
we add an aligned spot is at least 1/(k− 1) (having applied the first
transposition, and chosen the first step of the second transposition,
there’s always 1 of (k − 1) ways to choose the second spot which
creates an alignment).

So if there are currently k out of m unaligned slots, we have at
each run of the algorithm a probability (k

2)/(
m
2 ) of succeeding in the

initial coinflip and a probability at least 1/(k − 1) of reducing an
alignment. Hence the number of steps we need to wait is, in expecta-
tion, at most

(k− 1)
(

m
2

)
/
(

k
2

)
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Thus, if we sum this over k, we get the claim.

Exercise 11 (Doing better): We were wasteful above: it is possi-
ble do something better than drawing two independent permu-
tations U and V and praying. Show it is possible to improve
the coupling strategy above to one which creates an alignment
with at least probability c > 0 uniformly in the number of un-
aligned spots.

Exercise 12 (Mixing time lower bound):
Suppose we consider the random transposition chain (Xn :
n ≥ 0) started from the identity permutation. One way to tell
that our distribution is not close to uniform is that we have not
even moved some digits.

1. Let τ be the first time that every number k ∈ {1, 2, · · · , m}
has been moved at least once. Suppose that n is such that
Pr(τ > n) ≥ 9

10 . Prove that for such n,

dTV(Xn, Unif(Sm)) ≥ 1
100 ,

by considering the event where the permutation has no fixed
points (i.e. j so that π(j) = j).

2. Let An be the number of k ∈ {1, 2, · · · , m} which have not
yet been moved after n steps. Find α > 0 so that by
computing first and second moments of Atm , when
tm ≈ αm log m, Pr(Atm > 0)→ 1 as m→ ∞.

(Note)4 4 Combining this with the previous
Lemma, we have on the one hand
the time to stationarity is more
than O(m log m) steps and less than
O(m2 log m). The truth is closer to the
first one, and it leverages that after you
have randomized a location, it remains
in a sense uniformly random (this leads
to the idea of “Strong stationary times”,
see (Levin and Peres, Markov chains and
mixing times)).

Time reversal and reversibility

An alternative characterization of a Markov chain (Xj : j ≥ j0) is
that given a state Xk, the past and present of the chain are indepen-
dent (see Exercise 1). Such a description has no obvious definition of
time, and so it must be that you if reverse time in a Markov chain, it
remains a Markov chain. 5

5 In general, the time-reversal will not
be a time-homogeneous Markov chain.
Imagine for example, one takes an er-
godic chain started from a deterministic
initial condition x at time 0. The chain
reversed from time 100 still ends almost
surely at x after 100 steps!

Definition 29 (Time reversal): The time–reversal of P with respect
to stationary measure π is

Qx,y := Py,x
π(y)
π(x)

.

This is a new transition probability matrix defined on the space
S′ = {x ∈ S : π(x) > 0}.
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Exercise 13 (Reversed): Use the Radon–Nikodym theorem to
construct the time–reversed Kernel of a general Markov chain.

Theorem 23: Time–reversal

Let (Xj : j ≥ 0) be a stationary Markov chain with initial
distribution π. Then for any k ∈ N, the process Yj := Xk−j

for 0 ≤ j ≤ k is a Markov chain with stationary distribution π

and tpm Q.

It suffices to check the finite dimensional marginals of the chain.
As a consequence, it is also possible to extend a stationary Markov
chain to a 2-sided Markov chain:

Theorem 24: 2-sided chains

For a stationary Markov chain with initial distribution π, it is
possible to extend it to a 2-sided Markov chain (Xj : j ∈ Z)

which for any desired time j0 ∈ Z has that

(Xj+j0 : j ≥ 0) and (X−j+j0 : j ≥ 0)

are stationary Markov chains with tpms P and Q respec-
tively.

This leads to the idea of reversibility.6 6 This is one of the worst pieces of
nomenclature in mathematics. A much
better name would be time-reversal
symmetry

Definition 30 (Detailed Balance Equations): An irreducible tpm P
satisfies the detailed balance equation with respect to stationary
distribution π if

πiPij = πjPji for all i, j ∈ S.

A Markov chain whose tpm satisfies the detailed balance equa-
tions is reversible.

Equivalently P = Q.7 8 7 If a distribution π satisfies the detailed
balance equations, it also follows that π
is a stationary distribution for P.
8 There is an extension of detailed
balance to σ-finite measures which is
also useful for non-positively-recurrent
chains, but this is a bigger dive into
Markov chain theory than we will
cover.
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MCMC
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Markov chain convergence is not just philosophically important.
It also gives a useful tool for solving difficult problems, and one
technique for leveraging this is called Markov chain Monte Carlo
(MCMC). MCMC is a method of defining a Markov chain to sample
from a desired distribution π. At first sight, the problem of sampling
from a given distribution may not seem like an interesting problem.
However, many difficult problems can be posed as sampling prob-
lems, and this can be an effective way to relax difficult optimization
problems.

The Metropolis–Hastings Algorithm, explicitly, exploits that for
many distributions π, it is possible to compute the ratio πi/πj, while
the actual stationary distribution π itself is inaccessible (usually due
to the inability to compute the normalizing constant). 9 9 It is also assumed that there is some

easy input chain on the state space – the
proposal chain T in what follows – for
which the sampling problem is easy.

Definition 31 (Metropolis-Hastings Algorithm): Let π be a prob-
ability distribution on the countable space S. The Metropolis-
Hastings Algorithm (MHA) is a stochastic process, defined as
follows. As input, we suppose that we are given T a transi-
tion matrix for an irreducible Markov chain with the same state
space as π. The chain with this transition matrix is known as
the proposal chain.
Repeat the following, until a decided termination condition:

1. Let i be the current state of the MHA chain Xn. Choose a
new state j, the proposal state, according to Ti,j

2. Let U ∼ Unif(0, 1). Define an acceptance function,

a(i, j) =
πjT ji

πiT ij
and let Xn+1 :=

j if U ≤ a(i, j)

i otherwise
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Theorem 25: Metropolis Hastings

The Metropolis-Hastings Algorithm is a Markov chain which
is reversible with respect to π.

Proof. The sequence (Xn)n≥1 constructed by the Metropolis-Hastings
Algorithm is a Markov chain, as each Xn+1 only depends on Xn. If an
irreducible Markov chain has a stationary distribution, then the chain
is recurrent.

P be its transition matrix. We need to show that (Xn) is reversible
with stationary distribution is ~π. Given X0 = i, then,

P(U ≤ a(i, j)) =

a(i, j) if a(i, j) ≤ 1

1 otherwise

=

a(i, j) if πjT ji ≤ πiT ij

1 otherwise

and for i 6= j,

Pij =

T ij · a(i, j) if πjT ji ≤ πiT ij

T ij otherwise

The diagonal entries of P are determined by the fact that the rows
of P sum to 1. There are two cases,

• If πjTji ≤ πiTij

πiPij = πiT ija(i, j) = πiT ij

(
πjT ij

πiT ij

)
= πjT ji = πjPji

• If πjTji < πiT ij

πiPij = πiT ija(i, j) = πjT ji

(
πiT ij

πjT ji

)
= πjT jia(j, i) = πjPji

Hence, the detailed balance equations are satisfied.

MCMC is quite difficult in general to analyze, but it is simple to
implement.

Example 18: Statisical decipher

A beautiful example of Metropolis Hastings in action is the
following deciphering algorithm. Suppose one has an alpha-
bet A, for example, all lower case Roman characters and the
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space character. A cipher is just a permutation σ : A → A.
Now suppose we have a string S which is just some sequence
from the alphabet A, and suppose we observe P = σ̂(S),
where the map σ̂ is simply applied character-by-character.
Our goal is to decipher this message. Suppose we at least
know that the message S is in English. Now we can relax the
problem of finding σ̂ to the problem of sampling a random σ

so that σ(S) looks like English.
Now we can invent a distribution on permutations that ap-
proximately solves this problem. One simple way to do that
is to look at adjacent letter frequencies. So suppose we go
to large English-language text, and compute the frequencies
F(a, b) with which an adjacent letter pair “ab” appears in the
text. Now we for a given cipher σ we compute

L(σ) := ∏
j

F(σ(Pj), σ(Pj+1)),

where the index j runs over the length of P (less 1) and Pj is
the character in the j-th position of the string P.
Now we can use Metropolis-Hastings to sample from the
distribution π which is proportional to L. We let the pro-
posal chain be one which at each step chooses two charac-
ters a, b ∈ A uniformly at random and then swaps σ(a)
and σ(b). We then implement the Metropolis-Hastings algo-
rithm as above. See: https://github.com/elliotpaquette/

Math447stuff/blob/main/AustenDecoder.ipynb

(Bibliographic note) 10 10 This example originates in (Persi Di-
aconis. “The markov chain monte carlo
revolution”. In: Bulletin of the Amer-
ican Mathematical Society 46.2 [2009],
pp. 179–205), which is a beautiful invi-
tation to MCMC. Credit is also due to
Robert Dobrow (Dobrow, Introduction to
stochastic processes with R) for compiling
the data used for this example.

While Theorem 20 shows that MCMC (and specifically the
Metropolis Hastings algorithm) converges, actually estimating the
rate of convergence is a much more difficult (and moreover knowing
when to stop).

There are many general methods for bounding the statistical dis-
tance to stationary. 11 We show a simple example which illustrates

11 See (Levin and Peres, Markov chains
and mixing times) for a development of
various methods.

that there are problems for which MCMC can work great and also
ones for which it fails hard.

https://github.com/elliotpaquette/Math447stuff/blob/main/AustenDecoder.ipynb
https://github.com/elliotpaquette/Math447stuff/blob/main/AustenDecoder.ipynb
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Figure 1: β = 0 (top-4) versus β = 0.1
(bottom-2). Boundary conditions are
±0 on the left/right half. 5 × 10j, for
j = 4, 5, 6, 7 iterations on top; 5 × 10j,
for j = 5, 6 iterations on bottom.

Example 19: Glauber dynamics on the Ising Model

The Ising Model is a simple model of magnetization. It mod-
els the spins of nearby electrons in a lattice as {±1} states,
say a finite subset of Z2, but mathematically we just need
any undirected graph (V, E). The statespace of the lattice is
S = {±1}V .
In the Ising model, spins interact with their nearest neighbors
in that lattice. Spins prefer to be aligned, and so for a spin
configuration σ ∈ S, we define its energy

H(σ) = − ∑
{v,w}∈E

σvσw.

So spins that agree reduce the energy of the configuration
and spins that disagree increasse the energy.
The Ising model is a statistical spin distribution given by
π(σ) ∝ e−βH(σ), where β is the inverse-temperature of the
system (at high temperatures, the thermal energy overwhelms
the structure of the system and all spin configurations are al-
most equally likely, while at low temperatures, the system
freezes around low-energy configurations).
To model the effect of external interactions, one can put
boundary conditions around the lattice region, freezing the
spins to have some definite structure: in the figures these are
arranged as half +1, half −1 in the outline of a bar magnet.
There is a theorem due to Peierls/Griffiths12

0 which show
that when the system is sufficiently cold (β > βc), this pla-
nar magnetism model “magnetizes”, which in effect shows
that the spin configuration concentrates around a determin-
istic configuration (+1 on the left, −1 on the right – which
minimizes the energy).
There is a natural dynamics associated to this spin-system,
the Glauber dynamics or heat-bath dynamics, which can be un-
derstood as a model of heat-induced random perturbations
of the spin system. In this case, we choose a (non-boundary)
site v ∈ V uniformly at random, and then we update the spin
at site v according to the distribution of σ(v) when drawn
from π and conditioned on all spins (σ(w) : w ∈ V \ {v}).
In short, we swap the spin v to 1 with probability

p(σ) =
eβH̃

eβH̃ + e−βH̃
where H̃(σ) = ∑

w∼v
σw,

with ∼ meaning adjacency. We set it to −1 otherwise. This
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is similar, but not equal, to the Metropolis-Hastings dynamics
for the same chain.

12 See Rudolf Peierls. “On Ising’s
model of ferromagnetism”. In: Math-
ematical Proceedings of the Cambridge
Philosophical Society. Vol. 32. 3. Cam-
bridge University Press. 1936, pp. 477–
481 and Robert B Griffiths. “Peierls
proof of spontaneous magnetization in
a two-dimensional Ising ferromagnet”.
In: Physical Review 136.2A (1964), A437

Lemma 10 (Mixing time of the high-temperature Ising model): We
suppose that (Xn : n ≥ 0) and (Yn : n ≥ 0) are two copies of the
Ising model Glauber dynamics. We suppose for simplicity that
all interior vertices of the graph (on which the Glauber dynam-
ics is active) have degree D and N vertices. Then if

tanh(β) <
D + 1

2D
,

the chains couple in Oβ(log N) time.

Proof. Now we actually can produce a grand coupling, which is to say
we build a simultaneous realization of all Markov chains from all
states at all starting times. For a given initial state Σ, we set X(Σ)

n as
the version of this chain started from Σ.

We define the dynamics by always choosing the same sites vn

to flip across all chains. Then we sample iid Unif([0, 1]) random
variables (Un : n ≥ 0), which we will use to drive the flipped spins.
This means that if we set

pv(σ) =
eβH̃v

eβH̃v + e−βH̃v
where ρ(Xn+1, Yn+1)H̃v(σ) = ∑

w∼v
σw,

then we update each spin configuration according to

Xn+1 =

+1 if Un ≤ pvn(Xn)

−1 if Un > pvn(Xn).

Let ρ be the Hamming distance, which is to say ρ(Xn, Yn) is the num-
ber of nonequal spins of Xn and Yn.

If m = ρ(Xn, Yn) is the number of coordinates that do not match,
then we can find a sequence of spins Σ(j) of length m + 1 each differ-
ing from the previous by exactly 1 spin. Let X(j) be the Markov chain
(from time n onwards) in the grand coupling started from the j-th
spin Σ(j).

Then by the triangle inequality for all times beyond n,

ρ(Xn, Yn) =
m

∑
j=1

ρ(X(j)
n , X(j+1)

n )

Now for each j, at time n, (X(j)
n , X(j+1)

n ) differ in exactly 1 spin, at
a site v(j) ∈ V. If the site v(j) is selected by the Glauber dynamics,
the two chains couple, and ρ(X(j)

n , X(j+1)
n ) = 0. If a neighbor of v(j)
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is selected, then there is a chance the Hamming distance increases. If
neither is selected, the Hamming distance stays the same. So if N is
the number of vertices,

E[ρ(X(j)
n+1, X(j+1)

n+1 ) | Fn] = (1− D+1
N )+ 2

N ∑
w∼v(j)

|pw(X(j)
n )− pw(X(j+1)

n )|

Now by calculus, we check

|pw(X(j)
n )− pw(X(j+1)

n )| ≤ max
s∈R

∣∣∣∣ eβ(s+2)

eβ(s+2)+e−β(s+2) − eβs

eβs+e−βs

∣∣∣∣ ≤ tanh(β).

In all
E[ρ(X(j)

n+1, X(j+1)
n+1 ) | Fn] ≤ (1− D+1

N ) + 2D tanh(β)
N .

Hence, we get that

E[ρ(Xn+1, Yn+1) | Fn] ≤
(
1 + 2D tanh(β)−D−1

N
)
ρ(Xn, Yn).

Thus if we iterate this inequality, we get

E[ρ(Xn, Yn)] ≤ N
(
1 + 2D tanh(β)−D−1

N
)n.

Hence under the condition 2D tanh(β) < D + 1, this converges to 0
and moreover, when n = C log N for large enough C, this is less than
1
2 .
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Martingales

The martingale is a fundamental stochastic process which is essential
for basically all modern probability theory, whether it is for stochas-
tic processes or otherwise. Even for the study of Markov chains,
we need some of these techniques, and so we pause the theory of
Markov chains.

(Discrete time) Martingales are processes satisfying the two follow-
ing properties:

Definition 32 (Martingale): A Martingale (Mn : n ≥ 0) adapated
to a filtration (Fn : n ≥ 0) is a real-valued stochastic process
satisfying:

1. E|Mn| < ∞ for all n ≥ 0.

2. E(Mn+1 | Fn) = Mn.

Thus martingales are processes for which the best guess of their
next position is right where they are.

The canonical example of a martingale is simple symmetric ran-
dom walk:

Example 20: 1-d SSRW

The 1-dimensional simple symmetric random walk on Z is
the markov chain

(
Xj : j ≥ 0

)
for which

Xj =

1 + Xj−1, with Pr(· | Fj−1) =
1
2 .

−1 + Xj−1, with Pr(· | Fj−1) =
1
2 .

This is to say the process has iid incre-
ments with distribution Unif({1,−1}.

theorem In an ergodic chain F stationery

distribution it and for any initial lawn
if Xona Xn Efes't
Moreover Itil L f states i

ERE

proof is similar to the one shown

for finite chains by coupling

Example Simple symmetries randomwalk on 7L
1 2 72 72 72 12

3 2 7 O 7 2 3

1 2 72 72 1 2 72

Q a transient
null recurre nt
positive recurrent

In fact if Xj is simple RWon 2
Yj lXjl is reflected RWon No with p k

However the power martingales is that they describe many other
processes beyond simple random walk. Martingales can be pulled
from thin air: all one needs is a filtration (or even built, see Exercise
14). One of the key examples is the following:

Example 21: Doob Martingale

Let Y be any real valued random variable with E|Y| < ∞ and
let (Fn : n ≥ 0) be any filtration. Then Mn := E(Y | Fn)
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is a martingale (by the tower property of conditional expecta-
tions).

This is only an interesting martingale if the filtration and the ran-
dom variable are connected in some interesting way, such as in the
following.

Example 22: hitting

Suppose that (Xn : n ≥ 0) is an irreducible finite state
markov chain with two absorbing states a and b. Let Y =

1X absorbed at a, and let (Fn : n ≥ 0) be the filtration generated
by (Xn : n ≥ 0) Then the associated martingale is:

Mn := E(Y | Fn)

= Pr((Xm : m ≥ 0) absorbed at a | Fn).

Exercise 14 (Binary splitting): Suppose Y is a real-valued ran-
dom variable with E|Y| < ∞. Define the following sequences:
(Xn : n ≥ 0), (Yn : n ≥ 0), and (Fn : n ≥ 0). Here (Xn)

and (Yn) are stochastic processes and (Fn) is a filtration. These
are constructed inductively. Set X0 = 0, and F0 = {0, Ω} and
Y0 = EY. Then provided these have been constructed for some
n, we define

Xn+1 = 1Y>Yn , Fn+1 = σ(X0, . . . , Xn+1), and Yn+1 = E[Y | Fn+1].

Hence (Yn : n ≥ 0) is a Doob martingale. Show that for every
n ∈ N, conditioning on (X1, X2, · · · , Xn), the distribution of Y
is the same as Y conditioned to lie in some interval (a, b] (one
of which may be ∞ and both of which depend on the binary
sequence (X1, X2, · · · , Xn)), and that these intervals are disjoint
for different binary sequences (X1, X2, · · · , Xn). Hint: induc-
tion. Remark: this construction gives a sequence of finitely supported
approximations (Yn) to Y. We will show later that these converge to
Y.

It is also helpful to extend the definition of martingale to processes
in which the equality in Definition 33 is rather an inequality. 13

13 Remembering the direction of the
inequality is really hard. The nomen-
clature comes from complex function
theory, where it mirrors subhmarmon-
ic/superharmonic functions. It may
be helpful to think: “sub” means the
process is below its predicted value. Or
perhaps: martingale betting stratgies all
get ruined, supermartingale strategies
get ruined even faster!

Definition 33 (Submartingale): A submartingale (Mn : n ≥ 0)
adapated to a filtration (Fn : n ≥ 0) is a real-valued stochastic
process satisfying:

1. E|Mn| < ∞ for all n ≥ 0.
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2. E(Mn+1 | Fn) ≥ Mn.

A process (Mn : n ≥ 0) is a supermartingale if (−Mn : n ≥ 0) is a
submartingale.

Exercise 15 (convex): Suppose that φ : R→ R is convex and that
(Mn : n ≥ 0) is a martingale. Show that if (φ(Mn) : n ≥ 0)
has finite expectation, then it is a submartingale. If further φ

is nondecreasing, then the same holds if (Mn : n ≥ 0) is a
submartingale

Exercise 16 (The h-transform): Let (Xn : n ≥ 0) be a homoge-
neous time Markov chain with tpm P. Let φ : S → R be
bounded. Fix an n ∈ N. Define h(k, x) := E(φ(Xn)|Xk = x)
for k ≤ n.

1. Show that
Mk = h(k ∧ n, Xk∧n)

is a Martingale. A function h : N× S→ R with this
property is called a spacetime-harmonic function.

2. Fix a state x ∈ S with p = Pr(Xn = x) > 0. If we take
φ(y) := 1x=y

1
p , then the law Q(·) := E(1(·)φ(Xn)) is of a

chain conditioned to end at x after n steps. Check that
under Q(·), (Xn : n ≥ 0) is an inhomogeneous Markov chain
and give its tpms in terms of P and h. Remark: A Markov
chain conditioned to start at x and end at y is called a bridge.

3. Find the tpms of a 1-d SSRW bridge conditioned to start and
end at 0 after 2n steps.

Predictable processes, the Doob decomposition, and the bracket

Another method for manufacturing martingales is the Doob decompo-
sition.

Definition 34 (Predictable): A stochastic process (Xn : n ≥ 0) is
predictable if X0 is deterministic and Xn is Fn−1–measurable for
all n ∈N.

(Note)14 14 This implies adaptedness, but more-
over, it means that at the n-th step, you
could have determined the process
available in the (n− 1)-st.

Any adapted process can be made into a martingale:
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Theorem 26: Doob decomposition

Any real-valued process (Xn : n ≥ 0) having E|Xn| < ∞ for
all n and adapted to a filtration (Fn : n ≥ 0) can be uniquely
decomposed as Xn = Mn + An where M0 = 0, (Mn : n ≥ 0) is
a martingale and (An : n ≥ 0) is predictable. Moreover

An = EX0 +
n

∑
j=1

E(Xj − Xj−1 | Fj−1).

The process (An : n ≥ 0) is called the compensator of (Xn : n ≥
0).

Exercise 17 (Downwards Doob): Check that a process is a sub-
martingale if and only if its compensator is almost surely non-
decreasing.

The bracket process is an important is an important special case. 15 15 This is going to intuitively represent
the accumulated ammount of “ran-
domess” of a martingale. This measure
can be skeweed to be larger than in
some sense it should be if the second
moments of increments of the martin-
gale barely exist (or do not exist at all!)
in which case this is not really useful.
So it is almost always appears paired
with the condition that |Mj −Mj−1| ≤ 1
almost surely, which is more helpful.

Define

Definition 35 (Bracket process): For a martingale (Mn : n ≥ 0),
the bracket process [Mn] is the compensator of M2

n, i.e.

[Mn] = EM2
0 +

n

∑
j=1

E(M2
j −M2

j−1 | Fj−1)

= EM2
0 +

n

∑
j=1

E((Mj −Mj−1)
2 | Fj−1).

Predictable processes also play an important role as “betting
strategies.” One way to conceptualize a martingale (Mn : n ≥ 0),
or rather the stochastic process of increments (Mn −Mn−1 : n ≥ 1), is
as the winnings from playing a fair game. 16 16 For example: the return for betting

1 dollar on a fair coin flip, where the
payout is the amount bet, in which case
the payout is 1 or −1 with probability
1/2–i.e. 1-d SSRW.

In this case a predictable process can play the role of wager size,
which is to say the amount the player wishes to bet in the n-th step.
In this case

Definition 36 (Discrete stochastic integral): The (discrete) stochas-
tic integral (M ◦ A) of two (Fn : n ≥ 0)–adapted processes is the
stochastic process

(M ◦ A)n = M0 A0 +
n

∑
j=1

(Mj −Mj−1)Aj

for n ≥ 0, which is again adapted.

Moreover, this process remains a (sub)-martingale in some cases:
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Lemma 11: Suppose (Mn : n ≥ 0) is a (Fn : n ≥ 0)–adapted
process and (An : n ≥ 0) is a (Fn : n ≥ 0)–predictable process
with |An| almost surely bounded for each n ≥ 0 :

1. If M is a martingale, then M ◦ A is a martingale.

2. If M is a submartingale and A ≥ 0 then M ◦ A is a
submartingale.

In the context of the betting strategy interpretation, this means
that regardless of how you choose to bet, your winnings remain a
martingale.

The application of this that we’ll use the most frequently is the
stopped process. 17 17 The notation a ∧ b := min{a, b} is

handy for working with stochastic pro-
cesses. There is also a ∨ b := max{a, b}.
The direction of the carat is the same as
conjunction (logical and) and disjunc-
tion (logical or).

Definition 37 (Stopped process): If (Xn : n ≥ 0) is a stochastic
process and τ is a stopping time, then the process Xτ given by
Xτ

n := Xτ∧n is called the stopped process. Setting An := 1τ≥n,
then Xτ = X ◦ A

Note that by construction, An is predictable, as to check τ ≥ n, you
just have to check that τ did not occur at times 0, · · · , n− 1.

X ◦ A = X01τ≥0 +
n

∑
j=1

(Xj − Xj−1)1τ≥j

= X0 +
n∧τ

∑
j=1

(Xj − Xj−1).

Corollary 3: If M is a martingale and τ a stopping time, Mτ is
again a martingale. The same holds for submartingales and
supermartingales.

As betting strategies, this naturally represents stopping criteria: i.e.
you have to know when to walk away! 18 18 It’s also important to know when to

hold ’em and when to fold ’em.

Optional stopping

Theorem 27: Optional stopping

Suppose that for a submartingale M and a stopping time τ

one of the following three conditions holds:

1. τ ≤ K almost surely for some constant K > 0,

2. τ < ∞ almost surely and |M| ≤ 1 almost surely, or

3. Eτ < ∞ and |Mn −Mn−1| ≤ 1 almost surely.
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Then for any stopping time σ with σ ≤ τ almost surely,

EM0 ≤ EMσ ≤ EMτ ,

and if furthermore (Mn : n ≥ 0) is a martingale, then the
above is an equality.

(Note)19 19 As a matter of formulation, the
constant 1 in parts 2 and 3 can be
replaced by any other positive real
number.Proof. Note that the constant σ = 0 is a stopping time, so it suffices to

show EMσ ≤ EMτ under the conditions given. The process Mτ −Mσ

is again a submartingale, and hence E(Mτ
n − Mσ

n) is increasing in n
and so is always larger than 0. As τ is almost surely bounded, there
is some K deterministic so that Pr(τ > K) = 0. Hence taking n = K,
we have Mτ

K = Mτ almost surely.
The latter two are applications of dominated convergence, applied

to the bounded stopping times τ ∧ K and σ ∧ K as K → ∞.

Example 23: Null–recurrence 1d-SSRW

We can use this to analyze SRW. Let (Xn : n ≥ 0) be 1-d
SSRW started from 0. Let τ+

0 be the time of first return, and
let τa for a ∈ N be the hitting time of {a,−a}. Now τa < ∞
almost surely (from any state x ∈ [−a, a] there is a probabil-
ity p that in a stepes that the SRW hits one of these. So in ka
steps, the probability it still hasn’t hit is at most (1− p)k. . . ).
Hence τa ∧ τ+

0 is finite almost surely and so we can apply
Theorem 27. Now to get something from it, we should let
time advance 1 step. The process (Xn : n ≥ 1) is still a mar-
tingale, and so:

E[Xτa∧τ+0
|X1 = 1] = 1.

Now

E[Xτa∧τ+0
|X1 = 1] = a Pr(τa < τ+

0 |X1 = 1)+ 0 Pr(τa > τ+
0 |X1 = 1).

Hence
Pr(τa < τ+

0 |X1 = 1) =
1
a

.

The same claim conclusions holds if X1 = −1, and so we
have unconditionally

Pr(τa < τ+
0 ) =

1
a

.

There are two conclusions from this: the first is that 1-d
SSRW is recurrent, as each τa is finite almost surely, and so

Pr(τ+
0 = ∞) < Pr(τa < τ+

0 ) =
1
a

.
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Second, while it is finite, there is a probability of at least 1/a
that the process takes a steps or longer to return to 0, and
hence

∞

∑
a=1

Pr(τ+
0 ≥ a) ≥

∞

∑
a=1

1
a
= ∞.

Therefore, this process is null-recurrent.

Exercise 18 (Exit): Use optional stopping to compute the follow-
ing:

1. The probability of SSRW first exiting the integer interval
[a, b] at b if started at some x ∈ (a, b).

2. The expected time of SSRW to first exit {a, b} given it starts
at some x ∈ (a, b). Hint: look at a martingale made from X2.

Example 24: Pattern matching (200)

Suppose we look for the first occurrence of some pattern in
a sequence of random letters. Let A be a finite alphabet, and
let p = (pα : α ∈ A) be a probability vector. Suppose we are
interested in the first appearance of a word w = w1w2 · · ·wk.
We can use optional stopping to find how long it takes to see
the word in a sequence (Xn : n ≥ 1) of iid samples from A
with probability vector p, which we can assume puts positive
probability on every letter of the alphabet.
Let τ be the first hitting time of the word w, i.e.

τ = min{n : Xn−j = wk−j, ∀ 0 ≤ j < k}.

To define the martingale, we suppose that Rivendell casino
offers you a fair game betting on the outcome of the next
digit, i.e. if you bet $1 on a, and a occurs, you win 1/pa.
Now since w is your lucky word, you just bet on sequences
that look like w. So at every step, you bet $1 on w1 appear-
ing (it could be the start of your lucky word!). If you win,
you then “double-down” and bet your winnings of 1/pw1 of
1/pw1 on w2. If your lucky word appears, you just put your
winnings in your pile.
Now this is a betting strategy on a martingale (or in fact a
combination of many martingales), and so it actually has to
be a martingale. These basic martingales have increments:

Y(a)
n+1 −Y(a)

n := 1Xn+1=a − 1
pa

.
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On the letter w1, we always bet 1. On the letter w2, we bet
1/w1, but only if the current letter is w1. Hence, for each 1 ≤
j ≤ k we have a betting strategy:

A(j)
n =

j−1

∏
`=1

1Xn−j+`=w`

pw`

.

Our data winnings can be represented by

Mn =
k

∑
j=1

(
Y(wj) ◦ A(j))

n,

with M0 = 0.
Now the increments of Y(a) are all bounded, and our betting
strategies are bounded, so to apply optional stopping, it suf-
fices to show Eτ < ∞. In every consecutive block of k letters,
we have a positive probabilility q = ∏j pwj of seeing the pat-
tern. This is in every consecutive block, and so

Pr(τ > mk) ≤ (1− q)m,

which implies τ has finite expectation.
Thus

0 = EM0 = EMτ .

The first time that τ occurs, every betting line we had started
from before time τ − k has failed (meaning we have no win-
nings). We also have winnings coming from all the successful
bets that started (inclusively) at times j > τ − k. So our win-
nings at time τ is (since if τ happens we know precisely what
the last k letters are!)

k

∑
j=1

j

∏
`=1

1wk−j+`=w`

pw`

We have bet a total of τ dollars, as every betting line cost $1,
and so

Mτ =
k

∑
j=1

j

∏
`=1

1wk−j+`=w`

pw`

− τ.

Thus we conclude from optional stopping

Eτ =
k

∑
j=1

j

∏
`=1

1wk−j+`=w`

pw`

.

For example, the expected time to see the pattern HTH in a
string of fair coins is 23 + 2 = 10, while the expected time to
see HTT is just 23 = 8.

20 This construction is due to Shuo-Yen
Robert Li. “A Martingale Approach to
the Study of Occurrence of Sequence
Patterns in Repeated Experiments”.
In: The Annals of Probability 8.6 (1980),
pp. 1171 –1176. doi: 10.1214/aop/
1176994578. url: https://doi.org/10.
1214/aop/1176994578.

One lesson to draw from this example
is that to find the expected time of a
Markov chain Sn to hit a state, it is
helpful to construct a martingale Mn of
the form f (Sn)− n. The Markov chain
Sn in this pattern matching example is
(Xn, Xn−1, . . . , Xn−k).

https://doi.org/10.1214/aop/1176994578
https://doi.org/10.1214/aop/1176994578
https://doi.org/10.1214/aop/1176994578
https://doi.org/10.1214/aop/1176994578
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Exercise 19 (SRW): Let (Xn : n ≥ 0) be biased 1-d SRW started
at 0 (so Xn+1 − Xn is 1 or −1 with probability p or 1 − p, re-
spectively).

1. Find a(β) so that Mn := eβXn−na(β) is a martingale for any
β ∈ R. This is called the exponential martingale.

2. Compute E1sτ+0 for s ∈ (0, 1). Be careful that you are applying
optional stopping correctly. (21

0)

3. Use this to compute the probability of never returning in the
case p > 1

2 .

21 From this expression, in the case that
p = 1

2 , it is possible to conclude that
Pr1(τ

+
0 = k) � 1

k3/2 in the case of SSRW
(the symbol ak � bk means there are
constants c, C so that cak ≤ bk ≤ Cak for
all k ≥ k0). More precisely one shows
that the number of simple random walk
paths first returning to 0 after 2k steps
is given by the k-th Catalan number.

One of the big applications of optional stopping are maximal in-
equalities, which give stochastic bounds for the maximum (in time) of
a martingale. The basic idea is contained in the following argument:

Proof. Suppose that we have a martingale (Mn : n ≥ 0) and suppose
that for some a > 0, τ is the first time that |Mn| ≥ a. Then |Mn| is
a submartingale (as it is a convex function of a martingale), and by
Optional Stopping

E|Mτ∧n| ≤ E|Mn|

Now on the event that τ ≤ n, we have |Mτ∧n| ≥ a, from which it
follows that

Pr(τ ≤ n)a ≤ E|Mτ∧n| ≤ E|Mn|.

The probability on the left is nothing but Pr(max0≤k≤n |Mk| ≥ a), and
so we have proven the following.

Lemma 12 (Doob Maximal inequality): For any (Mn : n ≥ 0) and
any a > 0 and all n ≥ 1

Pr( max
0≤k≤n

|Mk| ≥ a) ≤ E|Mn|
a

.

Now this is a useful inequality itself, but the idea of the proof is
even more important than the statement. 22

22 This same argument also applies to
non-negative submartingales (Xn :
n ≥ 0) (in place of |Mn|) and the
positive part of submartingales (which
is non-negative a submartingale). We
can also replace the absolute value
function | · | by any convex function φ.
It’s convenient to refer to all of these
versions of this argument as Doob’s
maximal inequality.

One of the classic applications of the maximal inequality is the
classic strong law of large numbers.

Corollary 4 (Kolmogorov Strong Law): Suppose that (Xn : n ≥ 1)
are independent and satisfy ∑∞

n=1
Var(Xn)

n2 < ∞ then 1
n ∑n

k=1(Xk −
EXk)

a.s.−−−→
n→∞

0.

(Note)23

23 This can be used to prove the usual
strong law of large numbers for iid
random variables (Yn : n ≥ 0) with
E|Y1| < ∞ by looking at the trun-
cations Xn = Yn1|Yn |≤n, which was
Kolmogorov’s original proof.
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Proof. Note that without loss of generality, we can assume that all
{Xn} are mean 0. Set Sn := 1

n ∑n
k=1 Xk. By a direct application of

Borel–Cantelli, and Chebyshev’s inequality, the variance condition
implies24 that along the subsequence nk = 2k, 24 If checking this, use the form

Pr(|X| > a) ≤ E
(|X|21|X|>a)

a2 , then
apply Borel Cantelli, and use Fubini to
carefully rearrange the sum and finally
compare to the summability condition.

Pr(|Snk | > δ i.o.) = 0. (3)

Now we need to fill in the gaps between Snk+1 and Snk . Let Mn =

∑n
`=nk

X`, which is a martingale. By the Doob maximal inequality
(applied to |Mn|2)

Pr( max
nk≤n≤nk+1

|Mn|2 ≥ a2) ≤
E(M2

nk+1
)

a2 =
1
a2

nk+1

∑
`=nk

Var(X`).

Then

Pr( max
nk≤n≤nk+1

| n
nk

Sn − Snk | ≥ δ) ≤ 1
δ2n2

k

nk+1

∑
`=nk

Var(X`) ≤
4
δ2

nk+1

∑
`=nk

Var(X`)

`2 .

So by another application of Borel-Cantelli,

Pr({ max
nk≤n≤nk+1

| n
nk

Sn − Snk | ≥ δ} i.o.) = 0.

By combining this with the bound (3), we conclude |Sn| > 2δ i.o. with
probability 0. As this holds for any δ > 0, we have shown the almost
sure convergence.

Lemma 13 (Lp-Maximal inequality): For any martingale (Mn : n ≥
0), any p > 1 and all n ≥ 1

E
(

max
0≤k≤n

|Mk|p
)
≤
(

p
p− 1

)p

E
(
|Mn|p

)
.

Proof. Set M∗n = max0≤k≤n |Mk| and fix a cutoff K > 0. Applying
Fubini’s theorem and using τ as the first time that |Mn| ≥ λ

E
(

M∗n ∧ K
)p

=
∫ ∞

0
pλp−1 Pr(M∗n ∧ K ≥ λ)dλ

=
∫ K

0
pλp−2E(|Mτ∧n|1τ≤n)dλ

=
∫ K

0
pλp−2E(|Mn|1τ≤n)dλ

=
∫ K

0
pλp−2E(|Mn|1M∗n≥λ)dλ.

25 Then interchanging the order of integration, we get 25 In the third line, we used that

E([|Mn| − |Mτ∧n|]1τ≤n)

= E([|Mn| − |Mτ∧n|]) ≥ 0,

as on the event τ > n the random
variable |Mn| − |Mτ∧n| = 0.

E
(

M∗n ∧ K
)p ≤ p

p− 1
E
(
|Mn|(M∗n ∧ K)p−1).
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Applying Hölder’s inequality with exponent p/(p− 1)

E
(

M∗n ∧ K
)p ≤ p

p− 1
(
E|Mn|p

)1/p(
E(M∗n ∧ K)p)1−1/p.

Now we can divide both sides by the appropriate power of E
(

M∗n ∧
K
)p

< ∞, and conclude

E
(
|M∗n ∧ K|p

)
≤
(

p
p− 1

)p

E
(
|Mn|p

)
.

Taking K → ∞ and applying monotone convergence, the theorem
follows.

The reflection principle

The cases above give bounds for the maximum of martingales. For
the case of SSRW, it is actually possible to go a step further and actu-
ally compute the distribution function of the maximu, using what is
known as the reflection principle.

We can slightly generalize the setup to random walks with sym-
metric step distributions. A real valued random variable X is sym-

metric if X law
= −X. Let Sn = ∑n

j=1 Xj.

Theorem 28: Reflection principle

Suppose that {Xn} are independent, symmetric random vari-
ables. Let Sn = ∑n

j=1 Xj. For all n ≥ 1 and for all t > 0,

Pr
(

max
1≤j≤n

Sj ≥ t
)
≤ 2 Pr

(
Sn ≥ t

)
.

Proof. Let τ be the first time j that Sj ≥ t. Then

Pr
(

max
1≤j≤n

Sj ≥ t
)
= Pr(τ ≤ n).

Now we can define the evil twin random walk Ej by

En :=
n

∑
j=1

Xj(−1)1{τ<j}.

In other words, the increments of En and Sn are the same up to τ,
and after τ they are opposite.

Now (En : n ∈ N) and (Sn : n ∈ N) have the same law, but they
are correlated! On the event τ ≤ n, we have that at least one of En ≥ t
or Sn ≥ t, and hence

Pr(τ ≤ n) ≤ Pr({En ≥ t} ∪ {Sn ≥ t}) ≤ 2 Pr(Sn ≥ t),

using the union bound and equality in law.

This is extremely sharp.
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Martingale convergence

Part of the picture we want to develop for martingales is that in some
sense, all martingales look the same: the only thing that changes is
the speed at which they run. 26 The prototypical constant speed mar- 26 There is an important caveat for

discrete-time martingales: it can happen
that the increments of a martingale are
so wild, that in a single step, a near-
eternity of randomness has passed.
(For example the martingale could
have an increment of infinite variance).
Otherwise said, for such a martingale,
the actual martingale structure is
not sufficiently fine-grained to be
interesting. So discrete-time martingales
often need additional structure to be
interesting: two prominent examples
are (1) the increments are bounded (a.s.)
or (2) the martingale is almost surely
positive (this implicitly bounds the
increments).

tingale is 1-d SSRW, which is null-recurrent. 27 Hence it has excur-

27 Note that its bracket process
[Xn] = n–the bracket can be used
as a measurement of accumulated
randomness.

sions that travel arbitraily far from its starting point, but it nonethe-
less returns to where it starts albeit in infinite expected time. But it
can also happen that the accumulated amount of randomness of mar-
tingale, over its entire lifetime, is finite. In this case, the martingale
must converge.

The key idea to prove this is the “buy–low–sell–high” betting
strategy. Let a < b be two real numbers. So given a martingale M,
we will design A by wagering whenever the process has decreased
below a and is on its way back up! In mathematical terms, we design
a sequence of stopping times

α1 ≤ β1 < α2 ≤ β2 < · · ·

by the following inductive rules. We say that α1 is the first time the
martingale crosses below a. We then let β1 be the first time after α1

that the process crosses above b. Then, for k ≥ 2 we define

αk = inf{n > βk−1 : Mn < a} and βk = inf{n > αk−1 : Mn > b}.

We then let An = ∑∞
k=1 1n∈[αk ,βk ]

, which is to say we wager on (Mn)

when the process crosses below a and we sell it once it goes back
above b.

We define the number of upcrossings:

Nn := max{k ≤ n : βk < ∞},

where we formally take β0 = 0, so that Nn ≥ 0 for all n. We show the
following:

Lemma 14: Suppose that (Mn : n ≥ 0) is a submartingale. Then

(b− a)EN∞ ≤ sup
n

E((Mn − a)+ − (M0 − a)+).

Proof. Let Yn := a + (Mn − a)+. By Exercise 15, if M is a submartin-
gale, then so is Y. Set

(Y ◦ A)n =
Nn

∑
k=1

(Yβk −Yαk ) + (Yn∧αNn
−YαNn

).

Then by how Y is chosen,

(Y ◦ A)n ≥ (Nn)(b− a).
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Taking expectation, we have

E(Y ◦ A)n ≥ E(Nn)(b− a).

Now Y ◦ A = Y−Y ◦ (1− A), and so

E(Y ◦ A)n = EYn −EY0.

Taking n → ∞ and applying monotone convergence, the lemma
follows.

Theorem 29: Martingale Convergence

Suppose (Mn : n ≥ 0) is a submartingale with
supn E(Mn)+ < ∞ then there is a random variable M∞ with
E|M∞| < ∞ so that

Mn
a.s.−−−→

n→∞
M∞.

Proof. Using

(b− a)EN∞ ≤ sup
n

E((Mn − a)+ − (M0 − a)+),

and using that
(Mn − a)+ ≤ (Mn)+ + |a|,

we have that

sup
n

E((Mn − a)+ − (M0 − a)+) ≤ 2|a|+ E|M0|+ sup
n

E(Mn)+ < ∞

We therefore have EN∞ < ∞ and hence N∞ < ∞ almost surely.
Thus for all pairs of rationals a < b, we have that the number of
upcrossings over (a, b) is finite almost surely.

Now on the event lim infn Mn < lim sup Mn, there are two rational
numbers a < b, so that

lim inf
n

Mn < a < b < lim sup Mn,

but then it would follow that the number of (a, b)–upcrossings is in-
finite. And so we have that almost surely lim infn Mn = lim supn Mn,
and so M∞ = lim supn Mn is the almost sure limit of Mn.

To see that it is finite, first observe that, by the submartingale
property

EM0 ≤ EMn = E((Mn)+ − (Mn)−),

and hence
E(Mn)− ≤ −EM0 + E(Mn)+.

It follows that

sup
n

E|Mn| < −EM0 + 2 sup
n

E(Mn)+ < ∞.
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By Fatou’s Lemma
lim inf

n
E|Mn| ≥ E|M∞|

Hence E|M∞| < ∞.

(Note) 28 28 This shows that while a priori, the
assumption in the Theorem is weaker
than assuming expected absolute values
of Mn are uniformly bounded, for
submartingales, it’s actually the same.

One of the most useful special cases is when the the process is just
positive:

Corollary 5: A nonnegative supermartingale (Mn : n ≥ 0) con-
verges almost surely to a nonnegative random variable M∞

with EM∞ < ∞.

Example 25: Gambler’s Ruin

Suppose (Mn : n ≥ 0) is a non-negative integer valued mar-
tingale. Then Mn

a.s.−−−→
n→∞

M∞. This means that there is an
N ∈ N random so that Mn = MN for all n > N, as this is
the only way that an integer-valued sequnce can converge.
So if (Mn : n ≥ 0) represents the winnings of a gambler, then
the gambler almost surely stops playing at some point, ei-
ther because they quit (M∞ > 0) or because they were ruined
(M∞ = 0).
(Note that if Mn = 0 at some time n, then Mk = 0 for
all larger times as for a non-negative martingale, E[Mn+1 |
Fn] = 0 implies that Mn+1 is 0 almost surely).

Exercise 20 (Binary splitting Converges): Suppose Y is a real-
valued random variable with E|Y| < ∞. Define the following
sequences: (Xn : n ≥ 0), (Yn : n ≥ 0), and (Fn : n ≥ 0). Here
(Xn) and (Yn) are stochastic processes and (Fn) is a filtration.
These are constructed inductively. Set X0 = 0, and F0 = {0, Ω}
and Y0 = EY. Then provided these have been constructed for
some n, we define

Xn+1 = 1Y>Yn , Fn+1 = σ(X0, . . . , Xn+1), and Yn+1 = E[Y | Fn+1].

Hence (Yn : n ≥ 0) is a Doob martingale. Show that Yn
a.s.−−−→

n→∞
Y.

Hint: To rule out that lim Yn > Y, suppose Y is in an interval [a, a +
ε) which has positive probability δ and suppose Yn > a + ε. Now
estimate how much closer to a Yn will get using ε, δ and the current
location. Use this to rule out that Yn > Y for all n sufficiently large.

Exercise 21 (Hitting a line): Using optional stopping, and martin-
gale convergence, bound the probability that 1-d SSRW started
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at 0 ever crosses the line n 7→ a + bn for a > 0 and b ∈ (0, 1) by

e−λ(b)(a+1) ≤ Pr(crossing) ≤ e−λ(b)a,

where λ(b) is appropriately chosen (this can be computed us-
ing the exponential martingale).

Example 26: The Pólya Urn

This is one of the most central examples: of Martingale
convergence, of time-inhomogeneous Markov chains, of
(critically-tuned) self reinforcing behavior, and to boot, it has
foundational statistical applications.
The urn can described by running the following Markovian
procedure. Suppose after n steps, an urn as (Rn, Bn) balls
in it. Now sample a ball from the urn uniformly at random,
and add a ball to the urn of the same type as was selected.
Then

(Rn+1, Bn+1) =

(Rn + 1, Bn) with Pr(· | Fn) =
Rn

Rn+Bn
,

(Rn, Bn + 1) with Pr(· | Fn) =
Bn

Rn+Bn
.

Noticing that the number of balls always increases by n, one
may actually instead just record the red ball probability pn :=

Rn
Rn+Bn

, and note that the denominator can just be expressed
as n + R0 + B0. Now besides being a Markov chain, it turns
out that (pn : n ≥ 0) is actually a non-negative martingale. So
by martingale convergence, there exists a random variable p∞

so that pn
a.s.−−−→

n→∞
p∞.
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Exercise 22 (Pólya): Suppose that θ
law
= Unif([0, 1]). Let

(Xn : n ≥ 1) be iid random variables with law Bernoulli(θ).

1. Show that, with Sn := 1 + ∑n
j=1 Xj, (Sn : n ≥ 0) has the same

law as (Rn : n ≥ 0) where R0 = B0 = 1.

2. Show that if we define (pn : n ≥ 0) in terms of the Rn

defined above, then p∞ = θ.

3. Show that if we condition on (Xk : 1 ≤ k ≤ n), and that there
are a successes and b failures, then the law of p∞ is
Beta(a + 1, b + 1).

(Note)29

29 The Pólya urn process is foundational
to Bayesian statistics. Without getting
too deep into the meaning, suppose
we are in the business of trying to
determine the success probability θ
of a biased coin coming up heads by
repeatedly flipping it. Having never
flipped it, we might assert that any θ
is equally likely, which is to say that

θ
law
= Unif([0, 1]). The (pn : n ≥ 0)

of the Pólya urn describe the natural
estimator you would make for θ based
on the first n coin flips. Now martingale
convergence shows that p∞ = θ. If
we want to decide when to stop in a
structured way, we might stop when
E(`(pn − p∞) | Fn) < ε for some loss
function ` (this expectation is called
the risk). The law of p∞ | Fn (the
“posterior”) can be used to compute
this risk. A more exotic loss may even
be measured in terms of the whole path
(pk : k ≥ n), which is then described by
the Pólya urn (for example – imagine
that your investors lose confidence in
you when your estimator oscillates by
more than 10% in a short window).

As promised, another structure under which the discrete martin-
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gale structure is useful is when the increments of a random walk are
bounded.

Theorem 30: Bracket process & convergence

Suppose that (Mn : n ≥ 0) is a martingale. By monotonicity,
[M]∞ := limn→∞[M]n exists almost surely (but may be infi-
nite).

1. On the event [M]∞ < ∞, Mn
a.s.−−−→

n→∞
M∞, which exists and is

finite almost surely.

2. If furthermore |Mn −Mn−1| ≤ 1 almost surely, then on the
event [M]∞ = ∞,

lim sup Mn = ∞ a. s. and lim inf Mn = −∞ a. s. .

Proof. For the first claim, let τ be the first time [M]n+1 ≥ R, which is
still a stopping time, owing to the fact that [M] is predictable. Then
setting Y = Mτ , Y2 − [Y] is a martingale and [Y]n < R for all n. So by
the martingale propery, for all n ∈N

EY2
n = E[Y]n ≤ R.

Thus we can apply martingale convergence (Theorem 29), and we
conclude that limn→∞ Yn exists a.s. So, on the event that [M]∞ < R,
we conclude that lim Mn exists and is the limit of Yn. As the event
[M]∞ < ∞ is the union of the events [M]∞ < R over integer R, we can
construct the limit R-by-R and also conclude the convergence.

For the second claim, fix an a ∈ R. We may assume wlog that
M0 = 0, or else we apply the argument to (Mn − M0 : n ≥ 0). We
further assume a > 0, or else we negate the martingale. Now we
alternate between excursions above and below a, letting {τ(j)} be
defined inductively by

τ(2j) = inf{k ≥ τ(2j−1) : Mk > a}

τ(2j+1) = inf{k ≥ τ(2j) : Mk < a}.

Let σ
(j)
R be the first time n after τ(j) that |Mn −Mτ(j) | ≥ R.

Suppose τ(j) < ∞ (taking for j = 0, τ(0) = 0) Now Yn := Mn −
Mn∧τ(j) is a martingale, and Y2 − [Y] is a martingale. The bracket [Y]
is just

[Y] = [M]− [Mτ(j)
],

which still tends to ∞ on the event [M]∞ = ∞.
Now it cannot be that Y is bounded on the event [Y]∞ = ∞ (which

is the same event as [M]∞ = ∞), since stopping at σ = σ
(j)
R (the first
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time that |Yn| > R)
E(Y2 − [Y])σ∧n = 0,

and so
(R + 1)2 ≥ E[Y]σ∧n.

But if the event {σ = ∞} ∩ [Y]∞ = ∞ has positive probability, the
right hand side goes to ∞ as n → ∞. As R was arbitrary we must
have that on the event [Y]∞ = ∞, supn |Yn| = ∞ almost surely.

Let Y = M2 − [M] and let ϑ = τ(j+1) ∧ σ
(j)
R . The stopped process

Yϑ is a bounded martingale and so converges. As Y is unbounded on
the event [Y]∞ = ∞, we therefore have Yϑ

∞ = Yϑ almost surely on the
event [Y]∞ = ∞ By optional stopping, 30 30 The subtracted term accounts for the

case that τ(j+1) happened first. The first
excursion leads to the extra factor of a.0 = E(Yϑ | Fτ(j)) ≥ R Pr({σ(j)

R < τ(j+1)}∩{[Y]∞ = ∞} | Fτ(j))− (1+ a).

Thus
Pr({σ(j)

R < τ(j+1)} ∩ {[Y]∞ = ∞}) ≤ a + 1
R

.

By taking R→ ∞, it follows that

Pr({τ(j+1) = ∞} ∩ {[Y]∞ = ∞}) = 0.

Hence we have shown that on the event [M]∞ = ∞, the process
visits a neighborhood of [a − 1, a + 1] infinitely many times almost
surely. It follows that the lim sup and lim inf of the process are both
∞.31 31 In fact, as the increments of the

martingale are all at most 1, visiting
intervals [a− 1, a + 1] infinitely often for
all a ∈ R is equivalent to the statement
on lim sup and lim inf .

One nice corollary of these convergences is a major upgrade to
Borel-Cantelli (which is especially helpful in showing that things do
occur infinitely often). 32

32 Both first and second Borel Cantelli
lemmas follow from this statement. The
first follows from taking expectations
of the right hand side (and hence if
the probabilities of Bn summable, then
finitely many Bn occur almost surely).
The second lemma follows as if the
events are independent, then taking
Fn to be the natural filtration gener-
ated by the sequence, the conditional
expectations are expectations.

Corollary 6 (Better Borel Cantelli): Suppose for there is sequence
of events (Bn : n ≥ 1) adapted to some filtration (Fn : n ≥ 0).
Then

∞

∑
n=1

1Bn = ∞ a. s.⇔
∞

∑
n=1

E(1Bn | Fn−1) = ∞ a. s.

Proof. Let Xk = ∑k
n=1 1Bn , and let Mk and Ak be the martingale and

predictable parts of Xk. Then the compensator and bracket process
are given by

Ak =
k

∑
n=1

pn and [Mk] =
k

∑
n=1

(
pn− p2

n
)
, where pn := E(1Bn | Fn−1).

Note that these pn are random variables with 0 ≤ pn ≤ 1, and note
that in this notation we are trying to show that

sup
n

Xn = ∞⇔ sup
n

An = ∞.
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Now suppose we look at the event [M∞] < ∞, which could happen if
pn → 0 or pn → 1 sufficiently quickly. In this case, the martingale Mk

converges, in which case

sup
n

Xn = ∞⇔ sup
n

An = ∞,

as the martingale part is bounded.
We turn to working on the event {[M∞] = ∞}. Observe that

[Mk] ≤ Ak almost surely, and so supn An = ∞. It follows that
lim supn Mn = ∞ (from Theorem 30) and so

lim sup
n

Xn = lim sup
n

(Mn + An) = lim sup
n

Mn + lim
n→∞

An = ∞ a. s.

As Xn is increasing, it follows that supn Xn = ∞.

Example 27: Uniform division

Suppose that we take (Xn : n ≥ 1) iid uniform on [0, 1]. These
divide the interval [0, 1] into subintervals, by letting (I(n)k :
0 ≤ k ≤ n) be the (n + 1) intervals with endpoints given by
the set (Xk : 1 ≤ k ≤ n).
Let An be the length of the largest interval amonst (I(n)k : 0 ≤
k ≤ n). While (An : n ≥ 0) do not form a Markov chain (since
when the largest interval is divided, we may need to know
the length of the second-largest interval at time n to decide
An+1 after division), it is nonetheless true that at every step,
the largest interval is divided with probability An.
We claim that the largest interval gets divided infinitely often,
almost surely. By better Borel-Cantelli, it suffices to check

∞

∑
n=1

Pr(An+1 < An | Fn) =
∞

∑
n=1

An = ∞ a. s.

By the pigeonhole principle, An ≥ 1/n, and so this sum di-
verges.

Exercise 23 (Discrete OU): Recall that the discrete OU process

Xn+1 =
√

1− αXn +
√

αZn,

for an iid sequence of standard Gaussians (Zn : n ≥ 0) and a
fixed α ∈ (0, 1). Show that with probability 1,

lim sup
n→∞

|Xn| = ∞.

Hint: show that for any R > 0, the process goes above R infinitely
often.
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Pathologies and Uniform integrability

While all martingales in some sense look like simple random walk,
we can have situations in which the martingale can be made to look
more and more like a constant, at least in the sense of in-probability
convergence.

Example 28: Slow restarts

Consider the inhomogeneous time Markov chain (Xn) on Z

which at step k has the following rule. If at 0, it transitions
to {1,−1} with probability 1/(2k) respectively, or otherwise
stays at 0. If at x 6= 0, it transitions to 2x with probability 1/2
and to 0 with probability 1/2. The resulting Markov chain is
a martingale. When it leaves 0, it spends a geometrically dis-
tributed amount of time before returning. When at 0, it tends
to spend longer and longer times, and hence we actually have

that Xn
Pr−−−→

n→∞
0. It on the other hand does not converge al-

most surely.

Exercise 24 (Slow restarts): In this exercise, you will prove the
claims hold in the example above.

1. Suppose that n, m ∈N, show that

lim
m→∞

lim inf
n→∞

Pr(Xn+m = 0 | Xn) = 1 a. s.

Hint: Break this into cases, according to value of Xn, and then give
lower bounds for the probability in terms of m and n. The
memoryless property of the geometric random variable is helpful.

2. Using the bound above, show that limn→∞ Pr(Xn = 0) = 1.

3. Show by Better Borel-Cantelli that for some m ∈N

sufficiently large, Xkm 6= 0 for infinitely many k, almost
surely (and hence ¬(Xn

a.s.−→ 0)).

In the previous sections we developed some convergence proper-
ties under control on the increments (either one-sided, as in Theorem
29 or increment control, as in 30).33 If the increments are too large, 33 The finiteness of the bracket im-

plies the second moments have finite
increments

(or equivalently, the filtration is too discontinuous), we can create
martingales that “look” wrong. In these cases, the martingale prop-
erty is basically not meaningful.

Exercise 25 (Off to ∞): Construct a martingale (Mn : n ≥ 0)
with independent (non iid), mean 0 increments such that
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Mn
a.s.−→ ∞.Hint: necessarily, the increments must become more and

more spread out.

Both of these examples have limits that in some sense “do not
look” like the martingale itself. There is a related question of right
closability of a martingale, which is to say when it is possible to find
an M∞ ∈ L1(Pr) so that not only does Mn

a.s.−−−→
n→∞

M∞, but in fact

Mn = E(M∞ | Fn).
It turns out this has a complete answer, and it is connected to the

idea of uniform integrability.

Definition 38 (Uniform integrability): A collection of random vari-
ables (Xα : α ∈ A) is uniformly integrable if and only if for
every ε > 0 there is an M > 0 so that

sup
α

E(|Xα|1|Xα |>M) ≤ ε.

Uniform integrability is strictly stronger than supα E|Xα| < ∞.
Conversely, by Markov’s inequality, it is implied by supα Eψ(|Xα|) <
∞ for any increasing function ψ : (0, ∞) → (0, ∞) with ψ(x)/x a.s.−−−→

x→∞
∞. In particular, families of random variables that are bounded in
L2(Pr) are uniformly integrable.

The key value of uniform integrability is that it characterizes when
the expectations of random variables converge:

Lemma 15 (UI to L1): If (Xn : n ≥ 0) is a sequence of real valued
random variables having expectations and converging almost
surely to X∞ having finite expectation, then limn→∞ E|Xn −
X∞| = 0 if and only if the family (Xn : n ≥ 0) is uniformly
integrable.

Proof. Suppose the family is uniformly integrable. Then for any ε >

0, there is an M > 0 so that

sup
n

E(|Xn|1|Xn |>M) ≤ ε.

By Fatou’s lemma,

ε > lim inf
n→∞

E(|Xn|1|Xn |>M) ≥ E(|X∞|1|X∞ |>M).

Thus setting Yn = Xn1|Xn |≤M for n ≥ 0 and n = ∞, by dominated
convergence

lim
n→∞

E(|Yn −Y∞|) = 0.
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On the other hand

E(|Xn − X∞|) ≤ E(|Yn −Y∞|) + E|Xn1|Xn |>M|+ E|X∞1|X∞ |>M|

≤ E(|Yn −Y∞|)2ε.

Hence we conclude that

lim sup
n→∞

E(|Xn − X∞|) ≤ 2ε,

but the ε is arbitrary, and so we can now take ε→ 0.
For the reverse implication, fix an ε > 0. There is an N sufficiently

large that for all n > N,

E(|Xn − X∞|) ≤ ε/3 and E(|X∞|1|Xn−X∞ |≥1) ≤ ε/3.

By dominated convergence,

lim
M→∞

E(
N

∑
n=1

(|Xn|1|Xn |>M)) = 0,

and similarly,
lim

M→∞
E(|X∞|1|X∞ |>M−1) = 0,

Thus we can pick an M large enough that both of these are less than
ε/3. It now follows that with this M, for n ≤ N we have

E(|Xn|1|Xn |>M) ≤ ε/3 ≤ ε

and for n > N

E(|Xn|1|Xn |>M) ≤E(|Xn − X∞|)

+E(|X∞|1|Xn−X∞ |≥1)

+E(|X∞|1|X∞ |>M−1) ≤ ε.

A martingale (Mn : n ≥ 0) is uniformly integrable if the family of
random variables (Mn : n ≥ 0) is uniformly integrable. Uniformly in-
tegrable martingales are precisely right closable, or equivalently, they
are exactly the Doob martingales corresponding to some random
variable M∞ and some filtration (Fn : n ≥ 0).

Theorem 31: These are the Doobs

A martingale (Mn : n ≥ 0) is uniformly integrable if and only
if there is an M∞ of finite expectation so that Mn

a.s.−−−→
n→∞

M∞

and for all n ≥ 0
Mn = E(M∞ | Fn).
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Proof. Suppose (Mn : n ≥ 0) is uniformly integrable. Then by
definition of uniform integrability, with ε = 1, there is an M > 0 so
that

sup
n

E|Mn| ≤ sup
n

E(|Mn|1|Mn |>M) + sup
n

E(|Mn|1|Mn |≤M) ≤ 1 + M.

Hence by martingale convergence, there is an M∞ of finite expecta-
tion so that E|M∞| < ∞ and so that Mn

a.s.−−−→
n→∞

M∞. Morover from
uniform integrability and from Lemma 15,

lim
n→∞

E|Mn −M∞| = 0.

Now for any n and any N > n

Mn = E(MN | Fn),

and

E|E(MN | Fn)−E(M∞ | Fn)| ≤ E|E(|MN−M∞| | Fn)| = E|MN−M∞|.

Thus we have, for any N > n

E|Mn −E(M∞ | Fn)| ≤ E|MN −M∞|.

Sending N → ∞, we conclude that Mn = E(M∞ | Fn) almost surely.
The converse is a consequence of the following general fact.

Lemma 16 (Conditional expectations preserve ui): Suppose (Fα :
α ∈ A) is any family of sub-σ-algebras in a probability space
(Ω, F , Pr) and suppose Y is a real-valued random variable
with E|Y| < ∞. Then the collection

(E(Y | Fα) : α ∈ A)

is uniformly integrable.

Proof. Let Yα := E(Y | Fα). The function φM(x) = (|x| − M)+ is
convex, and so by conditional Jensen’s inequality

EφM(Yα) ≤ EφM(Y). (4)

Likewise by Markov’s inequality and conditional Jensen’s inequality

Pr(|Yα| ≥ M) ≤ E(|Yα|1|Yα |>M) 1
M

≤ E(E(|Y| | Fα)1|Yα |>M) 1
M

≤ E(|Y|1|Yα |>M) 1
M .

In the last line we have applied the definition of conditional expecta-
tion.
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Now for any ε > 0 there is an K > 0 sufficiently large that

E(|Y|1|Y|>K) ≤ ε/3.

Then using Markov’s inequality once more

E(|Y|1|Yα |>M) ≤ K Pr(|Yα| > M) + ε ≤ KE|Y|/M + ε.

Thus we conclude

Pr(|Yα| ≥ M) ≤ KE|Y|/M2 + ε/(3M).

Using (4) and the previous line,

E(|Yα|1|Yα |>M ≤ EφM(Yα) + M Pr(|Y|α > M)

≤ EφM(Y) + KE|Y|/M + ε/3.

Now picking M sufficiently large that the first and second term are
less than ε/3, we conclude

E(|Yα|1|Yα |>M) ≤ ε.

Uniform integrability, or the lack thereof, is one explanation for
how a non-negative martingale can hit 0.

Exercise 26 (UI or Bust): Suppose that (Mn : n ≥ 0) is a martin-
gale which is positive almost surely. Show that (Mn : n ≥ 0)
can be decomposed as Mn = Zn + Yn, two non-negative mar-
tingales, where (Zn : n ≥ 0) is uniformly integrable and
Yn

a.s.−−−→
n→∞

0.

The Pólya theorem & harmonic functions

In Example 23, we saw that SSRW on Z was null–recurrent. For
physical reasons, it can be reasonable to look at higher–dimensional
analogues of this process. That is, we consider the set Zd as a graph,
with nearest-neighbor adjacencies: i.e. for all x, y ∈ Zd

x ∼ y iff ‖x− y‖1 = 1.

In other words, they are adjacent if and only if they differ in exactly
one coordinate by 1. The SSRW on this graph is to select, at each
step, a neighbor uniformly at random and move to it. In dimension-
1, this agrees with the definition of SSRW already given.

In higher dimensions, which in some sense has more directions
to move away from the origin, the process becomes more transient.
Pólya’s theorem crystallizes this in the following way:
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Theorem 32: Pólya’s Theorem

SSRW on Zd is recurrent if and only if d ≤ 2.

(Joke)34 34 Famously: “the drunk man will
always find his way home, but the
drunk bird is lost forever.” S Kakutani

This theorem has many proofs, and we will illustrate one which is
more analytic in nature. But it is helpful to keep in mind the follow-
ing heuristic argument, which explains the transition (and which can
be turned into a proof). By the fundamental theorem of recurrence
Theorem 17, it suffices to show that 35 35 We also use that all the SSRWs on Zd

are 2-periodic.
∞

∑
n=1

P2n
o,o = ∞ iff d ≤ 2.

In dimension 1, the return probability is explicit, since

P2n
o,o = Pr(Binom(2n, 1

2 ) = n) =
(

2n
n

)
2−2n � 1√

n
.

If you had independent coordinates, then you could say that the
probability of returning to 0 is just the probability of simultaneously
having d 1-dimensional random walks return to 0 in n steps, from
which one would get P2n

o,o � n−d/2. This is non-summable when
d = {1, 2}.

Exercise 27 (Return-Pr): Directly argue in d = 3 that P2n
o,o �

n−d/2 by exhibiting an exact expression for the return probabil-
ity.

We pursue a different approach, based on harmonic functions.
This will lead to a general strategy for showing transience & recur-
rence, called the method of Lyapunov functions.

Definition 39 (Harmonic functions): A function h : S → R is sub-
harmonic for a time-homogeneous Markov chain (Xn : n ≥ 0)
if for all x ∈ S Ex|h(X1)| < ∞ and Ex(h(X1)) = h(x). The
function is subharmonic if h(x) ≤ Ex(h(X1)) and superharmonic if
h(x) ≥ Ex(h(X1)).

Harmonic functions (resp. sub/super-harmonic functions) give
rise to martingales (resp. sub/super-martingales), when applied to
the Markov chain. If the harmonic function has some extra structure,
then martingale convergence will tell us things about the behavior of
the underlying chain.
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Theorem 33: Bounded superharmonics

An irreducible THCS Markov chain is transient if and only if
there exists a nonconstant, bounded superharmonic function
h : S→ R.

Proof. First, if if this condition holds, then we can apply martingale
convergence to Mn := h(Xn) and conclude that Mn

a.s.−−−→
n→∞

M∞ (for
concreteness, let us say we have fixed the starting point of the chain
at some x ∈ S). Now suppose x is recurrent, and that Xn visited
x infinitely often. As h is nonconstant, there is another state y with
h(y) 6= h(x), and there is a positive probability (by irreducibility) for
the chain to travel from x to y – we could choose our favorite way it
could happen. Then by the Strong markov property, the chain would
have to also travel from x to y infinitely often, and hence the value of
h(Xn) would not converge.

To show the converse, it suffices to construct for an irreducible
THCS Markov chain, a bounded, nonconstant superharmonic func-
tion h. Let Nx be the number of visits to state x , and define

h(y) := EyNx =
∞

∑
n=0

Pn
y,x,

Then h(y) < ∞ for all y ∈ S \ {x}, as by the Strong Markov property

EyNx = Pry(τx < ∞)Ex Nx < ∞,

which further shows that h is bounded. We just need that the chain is
nonconstant. Note that EyNx ≤ Ex Nx, and hence if h is constant, we
must have Pry(τx < ∞) = 1 for all y ∈ S \ {x}. This would imply that
(Xn : n ≥ 0) is recurrent, however, as by letting the chain evolve one
step started from x, we would also have Prx(τx < ∞) = 1.

Finally, we note that h is in fact superharmonic, since 36 36 Note that this is very nearly har-
monic: Ey(h(X1)) = h(y) ev-
erywhere except at y = x, where
Ex(h(X1))− h(x) = −1. Hence we can
view this h as a solution of the equation
I − P = δx , which is called the Lapla-
cian of the Markov chain. The function
h is called the Green’s function.

Ey(h(X1)) =
∞

∑
n=0

Ey(Pn
X1,x)

=
∞

∑
n=0

Pn+1
y,x

≤ h(y).

This lets us show 1/2 of Pólya’s theorem.

Lemma 17: SSRW on Zd is transient for d ≥ 3.
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Proof. Most of the proof here is getting the right guess for h: verifying
the proof is just a little bit of calculus.

The idea is to try to construct a harmonic function that looks like
the example that appeared in the proof of Theorem 33, which is to
say we would like an approximate guess for EyNx. Furthermore, the
behavior of our guess can be altered as we wish on any finite set, and
so we really care about x and y separated.

Using the central limit theorem, we can approximate 37 37 Ignoring constants and parity issues
and the fact that we are actually com-
puting the probability of a point, which
is rather the local limit theorem.

Pry(Xn = x) ≈ e−‖y−x‖2
2/cnn−d/2.

Hence

EyNx ≈
∞

∑
n=1

e−‖y−x‖2
2/cnn−d/2.

For the first ‖y − x‖2
2 terms the Gaussian term is small. For larger

terms, the Gaussian is irrelevant, and so we have the cartoon that
with m = ‖y− x‖2

2

EyNx ≈
∞

∑
n=m

n−d/2 ≈ m1−d/2.

So we’re led to consider and h which is approximately h0(y) =

(‖y‖2
2)

1−d/2 (setting x = 0).
Now to turn this into a proof, we do a Taylor approximation for

‖y‖ large and α > 0 fixed:

(‖y‖2 +±2yj + 1)−α = (‖y‖2)−α

∓ 2αyj(‖y‖2)−1−α

+ (4(1 + α)αy2
j − 2α‖y‖2)(‖y‖2)−2−α

+O((‖y‖2)−3/2−α).

Using this, we conclude that

|Ey(h0(X1)− h0(y))| ≤ C‖y‖−d−1,

which is on the order of the error term.
Now that isn’t directly useful to the proof, since it doesn’t give

a supermartingale. However, if we pick α = d
2 − 1 − ε for any

ε, then the same Taylor computation shows that with hε(y) :=
(‖y‖2

2)
−(d/2−1−ε)

Ey(h0(X1)− h0(y)) ≤ 0

for all ‖y‖2 ≥ C(ε). Thus if we take h(y) = min{hε, δ} for some
sufficiently small δ > 0, we conclude

Ey(h(X1)− h(y))

= 0 ‖y‖ if ‖y‖ is sufficiently small

≤ 0 otherwise .
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Hence h is a positive, nonconstant martingale, and so SSRW is tran-
sient.

Recurrence can be done by an analogous strategy, but instead
of looking for a bounded superharmonic function, we look for a
subharmonic function whose every level set is finite and which has
bounded increments.

Theorem 34: Potentials for recurrence

An irreducible THCS Markov chain is recurrent if there exists
a function h : S → R with Ey|h(X1)| < ∞ having finite
and finite sub-level sets (which is to say {x : h(x) ≤ M} is
finite for every M) and so that for all but finitely many y ∈ S,
h(y) ≥ Eyh(X1).

Proof. Let F be the set of y which are exceptions to h(y) ≥ Eyh(X1).
Let τF be the first hitting time of (Xn : n ≥ 0). Then if Mn is h(Xn),
the stopped process MτF

n is a supermartingale which is bounded be-
low. By irreducibility, there is no finite set A so that Xn is eventually
in A, and hence from the finite-sublevel-set property, either τF < ∞
or lim sup Mn = ∞. From Martingale convergence, it must therefore
be that τF < ∞.

This lets us complete Pólya’s theorem.

Lemma 18: SSRW on Zd is transient for d = 2.

Proof. Continuing the strategy, from the Proof of Lemma 17, we for-
mally take d to 2 (this is critical) and consider

h0(y) = log(1∨ ‖y‖2
2).

Then Taylor expanding this,

log(‖y‖2 ± 2yj + 1) = log(‖y‖2)±
2yj

‖y‖2 +
1
2

−4y2
j + 2‖y‖2

‖y‖2 + · · ·

As before when taking expectation over a step of SSRW, the
1st,2nd,and 3rd order terms cancel (the 0th) and 4th survives. So
we have for all y sufficiently large that there is some constant C > 0
so that

|Eyh0(X1)− h0(y)| ≤ C‖y‖−4.

Now this is not necessarily a superharmonic, but we can fix it to
be superharmonic by subtracting a multiple of ‖y‖−2 (following
the computation from the Proof of Lemma 17), so get that for some



MATH 547 Lecture notes Lecture Notes | 78

M > 0 sufficiently large, there is a C > 0 so that if ‖y‖ > C, h0(y)−
M‖y‖−2 is superharmonic.

Exercise 28 (Birth-death): A birth-death chain on N0 is a Markov
chain with pi,i+1 = pi and pi,i−1 = qi = 1− pi. To truly model
death, we should make 0 an absorbing state, but it is actually
helpful if we consider the reflected version that just jumps back
to 1 (i.e. p0 = 1). Show that if

lim sup
j

(pj − 1
2 )j < 1

4

then the chain is recurrent, while if

lim inf
j

(pj − 1
2 )j > 1

4

then the chain is transient. Hint: functions of the form φ(x) = xα

should be helpful.

Stochastic approximation

Martingale convergence is one of the most powerful tools for show-
ing the limit behavior of stochastic processes, such as the success
probabilities in the Pólya urn. Now, the Pólya urn has a huge amount
of special structure which one cannot hope to appear in more general
contexts. However, martingale convergence is still generally the right
basic tool, which we will illustrate here.

Suppose that (Xn : n ≥ 0) is a real-valued stochastic process
adapted to a filtration (Fn : n ≥ 0), and suppose that there are con-
stants γn > 0 satisfying for some continuous F

E(Xn+1 | Fn) = Xn + γnF(Xn).

This can be thought of as a type of stochastic algorithm, whose up-
dates, in mean are a small multiple of F(Xn).38 Now provided we 38 If F is negative the derivative of some

function G, then this is 1-dimensional
“stochastic gradient descent,” a process
that on average decreases the value of
G.

have some control on the fluctuations and provided γn is taken to 0,
then we can actually ensure that this process converges to a 0 of F.

A stochastic approximation scheme is a general version of this, in
which we can actually ensure that all of this happens. 39 39 This is adapted from (Robin Peman-

tle. “A survey of random processes
with reinforcement”. In: Probability
surveys 4 [2007], pp. 1–79) which has
lots of discussion. The original source
for this is (Herbert Robbins and Sutton
Monro. “A stochastic approximation
method”. In: The annals of mathematical
statistics [1951], pp. 400–407).

Theorem 35: Robbins-Monro condition

Suppose that F is continuous and has finitely many zeros
{zk}. Suppose that (Xn : n ≥ 0), (γn : n ≥ 0) are adapted
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to (Fn : n ≥ 0) and satisfy

∞

∑
n=1
|E(Xn+1 | Fn)− (Xn + γnF(Xn))| < ∞ a. s.

Suppose that ∑n γn = ∞ a. s. and suppose that

∞

∑
n=1

Var(Xn+1 | Fn) < ∞ a. s.

Then
min

k
|Xn − zk|

a.s.−−−→
n→∞

0.

This is to say that the process almost surely converges to the zero-
set of F.

Proof. Define

Rn := E(Xn+1 | Fn)− (Xn + γnF(Xn)),

ξn+1 := Xn+1 − (Xn + γnF(Xn) + Rn).

Then the hypotheses can be expressed as

∞

∑
n=1
|Rn| < ∞ a. s. and

∞

∑
n=1

E(ξ2
n | Fn−1) < ∞ a. s.

If we write a Doob decomposition of the stochastic process (Xn : n ≥
0), then we have

Xn = Mn + An,

where Mn is given by the partial sum of ξn and An is the partial sum
of γnF(Xn) + Rn. By Martingale convergence (specifically Theorem
30), the martingale Mn converges. By the assumption on Rn, the
partial sum of Rn converges almost surely as well.

Now suppose that [a, b] is an interval on which F(x) > 0. Then
by continuity, there is δ > 0 and an ε > 0 so that on I = (b, b + ε),
F(x) > δ. Now for all times sufficiently large, whenever Xn enters
the interval it will exit the interval to the right (as the Mn is converg-
ing and the Rn is absolutely summable while the ∑ γnF(Xn) would
diverge if it stayed in there forever). Hence it actually follows there
is almost surely a last time that the process is in the interval [a, b]
(as the process will eventually be unable to jump over the interval,
it eventually, almost surely exits to the right, and in I the process
always exits to the right, eventually).

The same argument shows that for an interval [a, b] on which
F(x) < 0, the process almost surely visits the interval only finitely
many times. Now there are only countably many intervals [a, b]
which are preimages of (−∞,−q] and [q, ∞) for positive rational
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q, and so we conclude that F(Xn)
a.s.−−−→

n→∞
0, which is equivalent to the

claim.

(Note) 40 40 We can furthermore ensure that the
only zeros to which Xn converges are
the “stable zeros”, meaning x so that F
is positive to the left of x and negative
to the right.

Example 29: Two-armed bandits

Suppose we have a slot machine with two levers, one of
which is definitely luckier than the other (because the prob-
ability of them being equally lucky is clearly 0). Suppose for
simplicity we always wager $1, and one arm wins with prob-
ability p and the other with probability q, for p 6= q and both
in (0, 1).
The problem is that we do not know which is the correct
lever to maximize our winnings. So we need to experiment
some between pulling levers. On the other hand, we would
like to win as much as possible.
Let (Ln, Rn) be the winnings from the left lever and the right
lever respectively. A good strategy would have that (Ln +

Rn)/n a.s.−−−→
n→∞

max{p, q}, in that it at least would eventually
maximize the rewards. Even better, we would in some sense
maximize n max{p, q} −E(Ln + Rn), which is to say it would
minimize the regret.
Suppose we take the following strategy: let Xn := Ln

Ln+Rn+1
and select the left arm with probability Xn and the right arm
with probability (1− Xn).
Let (Fn : n ≥ N) be the natural filtration generated by L and
R. Then

E(Xn+1 | Fn) = (1− Xn)
( Ln + 1

Ln + Rn + 2
p + Xn(1− p)

)
+ Xn

( Ln

Ln + Rn + 2
q + Xn(1− q)

)
.

Note that each of these fractions we can expand by

Ln + a
Ln + Rn + 1 + b

− Ln

Ln + Rn + 1
=

a(Ln + Rn + 1)− bLn

(Ln + Rn + 1)(Ln + Rn + 1 + b)
.

Setting Wn = Ln + Rn + 1, we can therefore simplify this as

Ln + a
Ln + Rn + 1 + b

− Ln

Ln + Rn + 1
= (a− bXn)/Wn +O(1/W2

n).

Applying these simplifications,

E(Xn+1 − Xn | Fn) = (1− Xn)
( Xn

Wn
p
)

+ Xn
(1− Xn

Wn
q
)
+O(1/W2

n)
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So if we set F(x) = x(1− x)(p − q), and γn = 1
Wn

, then we
can check this satisfies the stochastic approximation theorem.
Note that Wn − 1 is stochastically larger (see the re-
mark that follows this example) than a sum of iid
Bernoulli(min{p, q}) and stochastically larger than a sum of
iid Bernoulli(max{p, q}), and hence we can check

∑
n

1
Wn

= ∞ a. s. and ∑
n

1
W2

n
< ∞ a. s.

The variance of the martingale increment can also be checked
to be bounded by O(1/W2

n).
Theorem 35 shows that Xn converges to either 1 or 0. The
stability analysis shows it converges to the “right” one when
p 6= q.

(Note)41 41 Bandits are a huge subjet. See for
example (Tor Lattimore and Csaba
Szepesvári. Bandit algorithms. Cam-
bridge University Press, 2020) for a
comprehensive discussion.

Remark 3: For two random variables X, Y say X is stochastically
larger than Y (or X stochastically dominates Y) if Pr(X ≤ t) ≤
Pr(Y ≤ t) for all t ∈ R. This is equivalent to saying it is pos-
sible to realize a coupling of X and Y so that X ≥ Y almost
surely. For two random walks, (Xn), (Yn), say that X is stochas-
tically larger if one can realize a coupling of X and Y such that
Xn ≥ Yn for all n.
For a random walk, this is implied by saying the conditional
distribution of Xn|Fn is stochastically dominates Yn|Fn for all
realizations of either history.

Convergence of stochastic gradient descent

The prototypical application of this is the convergence of stochastic
gradient descent, an optimization algorithm. 42 Suppose that F : 42 See (Léon Bottou, Frank E Curtis, and

Jorge Nocedal. “Optimization methods
for large-scale machine learning”. In:
Siam Review 60.2 [2018], pp. 223–311) for
a comprehensive treatment.

Rn → R is a smooth function with bounded first, second and third
derivatives. We suppose that we have the following non-degeneracy
condition:

〈∇F(x), (∇2F(x))∇F(x)〉 = 0 =⇒ ∇F(x) = 0. (5)

The simplest example of functions that satisfy this are strictly convex.
43 43 These are functions whose Hessian is

positive definite everywhere.Consider a stochastic algorithm defined by

Xn+1 := Xn − γn(∇F(Xn) + ξn)

for some random vectors ξn satisfying E(‖ξn‖2 | Fn) ≤ K. This ad-
ditional randomness can come from a lot of sources: it may be added
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artificially to improve the behavior of the algorithm, but frequently it
is due to employing a randomized estimator for the gradient which is
computationally simpler than the computing the actual gradient. 44 44 The classical Robbins and Monro

argument actually uses a vector version
of the scalar stochastic approximation
argument above. It shows that the path
of the algorithm asymptotically almost
surely converges to the trajectory of an
ODE, gradient flow, d

dt Xt = −∇F(Xt),
and so if all limit points of gradient
flow satisfy some property (such as
‖∇F(Xt)‖2 = 0), then so must the limit
point of the stochastic algorithm.

Now,

‖∇F(Xn+1)‖2 = ‖∇F(Xn)‖2

− 2〈γn(∇F(Xn) + ξn), (∇2F(Xn))∇F(Xn)〉+ Rn

Here Rn carries a factor of γ2
n, and so will be absolutely summable.

Then under Assumption (5) and by continuity, the set of {x :
‖∇F(x)‖ > δ} can be covered by countably many (necessarily dis-
connected) sets of the form {x : |〈∇F(x), (∇2F(x))∇F(x)〉| > ε}
for some ε > 0. By repeating the same argument as in Theorem 35 it
follows that

‖∇F(Xn)‖2 a.s.−−−→
n→∞

0,

which is to say that SGD converges to a stationary point.

Martingale concentration

When the increments of a martingale are sufficiently bounded, it is
possible to make much stronger estimates of the maximum value of a
martingale, and this leads to some of the most important applications
of martingales: tail bounds for random variables.

Definition 40 (Subgaussian): centered random variable X is V-
subgaussian if

EeλX ≤ eλ2V/2 for all λ ∈ R.

45 45 If the random variable is not centered,
there are competing definitions of what
V-subgaussian should mean. If one
requires |EX|2 ≤ V as well, then the
square-root of the subgaussian constant
is equivalent, up to universal constants,
to a norm.

For a martingale, we can define an upgraded bracket process,
replaces a sum of conditional variances by the sum of conditional
subgaussian increments.

Definition 41 (Subgaussian Bracket): martingale (Mn : n ≥ 0)
is (Vn)–conditionally subgaussian for an adapted process (Vn :
n ≥ 1) if for all n ≥ 1 and all λ ∈ R

E[eλ(Mn−Mn−1) | Fn−1] ≤ eλ2Vn a. s.

Define the subgaussian bracket JMnK as the smallest, non-
negative, non-decreasing adapted process so that (Mn : n ≥ 0)
is conditionally subgaussian with process (JMnK− JMn−1K : n ≥
1).
Say a Martingale is subgaussian if JMnK < ∞ a. s.
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This leads immediately to a tail bound for a martingale which
enjoys this conditional subgaussian property.

Theorem 36: Subgaussian Azuma

Suppose that (Mn : n ≥ 0) that is a subgaussian with martin-
gale. Then for any n, t ≥ 0,

Pr({ sup
0≤k≤n

(Mk −M0) ≥ t} ∩ {JMnK ≤ S}) ≤ exp
(
− t2

2S

)
.

Proof. By subtracting M0 from the martingale, we may assume M0 is
0. Define a new process, for any λ ∈ R,

En := exp
(
λMn − λ2JMnK/2

)
.

Then by the conditional subgaussian assumption (En : n ≥ 0)
is a supermartingale. Let T be the first time k that Mk ≥ t or that
JMkK > S. Then by optional stopping, for λ ≥ 0

1 ≥ E(ET∧n).

On the event {T ≤ n} ∩ {JMnK ≤ S}, we have

ET∧n ≥ exp
(
λt− λ2JMTK/2

)
≥ exp

(
λt− λ2S/2

)
.

Thus
1 ≥ Pr({T ≤ n} ∩ {JMnK ≤ S}) exp

(
λt− λ2S/2

)
.

Rearranging we have shown that for any λ ≥ 0,

Pr({ sup
0≤k≤n

Mk ≥ t} ∩ {JMnK ≤ S}) ≤ exp
(
−λt + λ2S/2

)
.

Optimzing over λ ≥ 0, we select λ = t/S which shows the bound.

A simple special case is for increments that are bounded.

Lemma 19 (Compact implies subgaussian): Suppose that X is
mean 0 and X ∈ (a, b) for a, b ∈ R. Then

E exp(λX) ≤ exp((b− a)2λ2/8).

Or simply, X is (b− a)2/4–subgaussian.

Proof. Suppose without loss of generality that b ≤ a. We can repre-
sent X as a convex combination, by

X = b
X− a
b− a

+ a
b− X
b− a

.
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Then by convexity for all λ ∈ R

E exp(λX) ≤ E

(
exp(λb)

X− a
b− a

+ exp(λa)
b− X
b− a

)
.

Using that X has mean 0,

E exp(λX) ≤ exp(λb)
−a

b− a
+ exp(λa)

b
b− a

=: f (λ).

Taking the log-derivative

d
dλ

log f (λ) =
−ab exp(λb) + ab exp(λa)
−a exp(λb) + b exp(λa)

.

With courage, we take another derivative, and then bound it above by
(b− a)2/4, uniformly in λ ∈ R. Then, integrating twice,

log f (λ) ≤ λ2

2
(b− a)2

4
.

As a corollary, we derive the classical Azuma inequalities.

Corollary 7 (Azuma): Suppose that (Mn : n ≥ 0) is a martingale
and (An : n ≥ 1 is a predictable process such that for all 1 ≤
k ≤ n, |Mk −Mk−1| ≤ Ak, then for all t ≥ 0

Pr
(
{ max

0≤k≤n
(Mk −M0) ≥ t} ∩ {

n

∑
1

Ak ≤ A}
)
≤ exp

(
− t2

2A

)
.

If Ak are in fact deterministic, then we derive the convential
Azuma inequality

Pr
(

max
0≤k≤n

(Mk −M0) ≥ t
)
≤ exp

(
− t2

2 ∑n
k=1 A2

k

)
.

Example 30: Vertex exposure martingale

Let G = (V, E) be a graph on vertex set V = {1, 2, · · · , n},
where E is a subset of all subsets of V of size 2. For each
edge e ∈ E, let Xe = Bernoulli(p) for some p ∈ (0, 1). The
resulting random graph, where we consider the random edge
set E′ = {e : Xe = 1} is called Bernoulli percolation on G. In
the case that G is the complete graph, this is called the bino-
mial random graph, or the Erdős-Rényi random graph.

The chromatic number of a graph G is the smallest χ ∈ N so
that there is a function f : V → {1, 2, · · · , χ} with the prop-
erty that {v, w} ∈ E implies f (v) 6= f (w). While the chromatic
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number of a graph is difficult to compute, for any Bernoulli
percolation G′, we have that for all t ≥ 0,

Pr(|χ(G′)−Eχ(G′)| ≥ t) ≤ 2 exp(−t2/2n).

To see this we form a martingale in which we reveal vertices
one at a time, which is to say Fk = σ(Xij : i, j ≤ k). We
then let Mk = Eχ(G′) | Fk. Now for every realization of
the (Xij), changing the edges adjacent to vertex k can only
change the chromatic number of the graph by at most 1; that
is if we have (X′ij) another realization of the percolation that
differs from (Xij) only on those edges incident to k, we have

|χ((Xij))− χ((X′ij))| ≤ 1.

This is because best case, changing an edge incident to k
could allow us to remove the color class of k. Worst case,
changing an edge incident to k might force us to add a new
color class for k. Hence |Mk −Mk−1| ≤ 1 almost surely.

To evaluate if this is useful, it is always possible to bound
the chromatic number by 2D + 1 where D is the maximum
degree in the graph. So if G is the complete graph on n ver-
tices, and p � 1/

√
n, the degrees are much bigger than

√
n

(see the Exercise below), and the concentration is much better
than the trivial bound on the chromatic number.

The chromatic number of a random
graph has a long, rich story. When
p ≤ n−1/2−ε, it is known from Alon
Krivelevich ’97 that the chromatic
number actually concentrates on one
of 2 numbers with probability going to
1. It is not known if there is a sharper
concentration bound then the one that
comes from Azuma.

Exercise 29 (Maximum Degrees in G(n, p)): Show that when
p
√

n → ∞, the minimum degree δ and the maximum degree
of the graph satisfy

δ

np
Pr−−−→

n→∞
1 and

∆
np

Pr−−−→
n→∞

1.

Azuma + Union bound.

Example 31: Thermodynamic limit of continuum percolation

Suppose that (X1, · · · , XN) are uniformly distributed on
B = [0, 1]d for some dimension d ≥ 1. Let A = A(X1, · · · , XN)

be the volume of the subset of B which is within distance
(R/N)1/d of a point Xn for some 1 ≤ n ≤ N. Let (Fn) be
the natural filtration associated to this sequence, and let (Mn)

be the Doob martingale Mn = E(A | Fn) for 1 ≤ n ≤ N.
Then setting cd to be the volume of the d-dimensional unit
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ball,
|Mn −Mn−1| ≤ cdR/N,

using that the volume in the ball around the point Xn is
cdR/N, and hence the conditional expectation can change by
at most π/N.(46

0) Thus by Azuma’s inequality, for all t ≥ 0

Pr(|A−EA| ≥ t) ≤ 2 exp(−Nt2/2c2
dR2).

Hence the area (for fixed d, R and large N) is practically de-
terministic.
With a slight modification of the setup, we can easily com-
pute the expected volume. If we consider the torus, where
opposite boundaries of the cube wrap around, then the ex-
pected volume En after adding n points satisfies

En+1 − En = E

∫
1
‖x−Xn+1‖2≤ R

N
1x∈B\Vn λ(dx).

Applying Fubini,

En+1 − En = cd
R
N

∫
1x∈B\Vn λ(dx) =

cdR
N

(1− En).

Thus the area that remains satisfies

(1− EN) = (1− cdR
N )N ≈ e−cdR.

Note that if R is large then the area left uncovered should be
small, while our concentration inequality degrades. So for
larger R, a different strategy is needed.

Example 32: Crazy Percolation

This is like above, but more crazy. Suppose that once more
(X1, · · · , XN) are uniformly distributed on B = [0, 1]d for
some dimension d ≥ 1. Now suppose that these are ar-
riving in order, and the k-th point to arrive creates a ball
around it of volume which depends on the existing config-
uration of points. It chooses one of the radii {rk}N

1 with-
out replacement, possibly randomly. The radii are given by
rk = (1/k log N)1/d. Let A be the resulting volume.

Letting Mn = E(A | Fn), we have

JMNK ≤ cdπ2

6(log N)2 .
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We just didn’t know in which order that occurred.
If the rk are sampled without replacement, uniformly, then
we still have that on the torus,

EN =
N

∏
n=1

(1− cd
n log N )→ e−cd ,

as N → ∞.

46 Writing the area function
A(x1, x2, . . . , xN) as a function of its
centers, we use here that

|A(x1, . . . , xn−1, xn, . . . , xN)

− A(x1, . . . , xn−1, y, . . . , xN)| ≤
Rπ

N
,

for all choices {xn} and y in B. Because
of this, the difference of martingales
(which are expectations of this function)
also satisfy this bound.

One classic minimization problem is the travelling salesman prob-
lem. The stochastic travelling salesman problem.

Example 33: Stochastic Travelling Salesman Problem

Suppose that
{

Xj
}

are iid uniform points in [0, 1]2. The
length of the shortest tour is given by

Ln := min
π∈Sn

n

∑
j=1
‖Xπ(j+1) − Xπ(j)‖,

where we take π(n + 1) = π(1). Once more we have that,
by using that each random variable can only change Ln by at
most 2, we just get that there is a c > 0 so that for all t > 0,

Pr(|Ln −ELn| ≥ t) ≤ 2 exp(−ct2/n).

The mean ELn �
√

n. One can always construct a strategy
by dividing the square into blocks of side length

√
n, and

then snaking up and down the columns of blocks in super-
market ordering, stopping in each block to cover all points
in each block in any arbitrary ordering. This is not hard to
check that it has at most order

√
n expected length (covering

all
√

n aisles of height 1).

On the other hand, one can show that with probability 1/2
at least half the points have a closest point which is at least
1/(100

√
n) away from it. To get to these n/2 points, one

must travel at least this distance, and so

ELn ≥
1
2

n
4

1
100
√

n
.

In this situation, Azuma’s inequality is actually better than
just bounded the increments. Given a collection of points{

Xj
}n

1 , let L denote the shortest tour, and let L̂ denote the
shortest tour not using Xk. Then by simply deleting the point
Xk (skipping it in order and going to the next point), we con-
clude

L̂ ≤ L.
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On the other hand, if we take the shortest tour through L̂, we
can always extend it to include Xk by simply adding a detour
through Xk to the closest point in the tour. With foresight, let
dk = minp>k ‖Xp − Xk‖. Then

L̂ ≤ L ≤ L̂ + 2dk.

Hence taking conditional expectation of this, given Fk, we
have

|E(L | Fk−1)−E(L | Fk)| ≤ E(2dk | Fk) ≤
C√

n− k
.

Applying Azuma’s inequality, we conclude that there is a c >

0 so that for all t > 0,

Pr(|Ln −ELn| ≥ t) ≤ 2 exp(−ct2/ log n).

Another classic optimization problem is the following.

Example 34: Longest Increasing subsequence

An increasing subsequence in a random permutation π ∈ Sn

is a collection {i1 < i2 < · · · < ik} so that π(i1) < π(i2) <

· · ·π(ik). The longest increasing subsequence problem, or
Ulam’s problem, is to determine the statistical behavior of the
longest increasing subsequence in a uniformly random per-
mutation. This was one of the first examples of computing,
and ties to the origins of Markov chain Monte Carlo.

To generate a random permutation, one way is to throw n
uniform random points (xj, yj)

n
1 on [0, 1]2. This defines a per-

mutation π by doing the following sorting procedure: re-
order the points so that x1 < x2 < · · · < xn and then let
π(j) be the relative ordering of yj amongst {yi}n

1 with 1 being
the smallest and n being the largest.

Now this has the virtue that increasing subsequences can
be described graphically. An increasing subsequence in
this representation is just a sequence of points so that
{i1 < i2 < . . . < ik} so that xij is increasing in j and yik is in-
creasing in j. In short, if you draw a path between the points,
it always goes up and to the right.
Now the length (counted by cardinality) of the longest path
Ln can only change by at most 1 when adding or moving a
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point, and so we have for all t ≥ 0

Pr(|Ln −ELn| ≥ t) ≤ 2 exp(−t2/2n).

It can be shown that ELn �
√

n, and so this bound is on the
same order as the mean. This is notably an example where
a straight martingale concentration does not give something
clearly useful.

See the textbook of Dan Romik. The sur-
prising mathematics of longest increasing
subsequences. 4. Cambridge University
Press, 2015 for a complete discussion of
this problem, which has many interest-
ing surprising connections.
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Branching processes

Branching processes provide a final important example of stochas-
tic processes. The basic version of a branching process describes
the size of population that evolves in time. Each (asexual) amoeba
in this population can give birth to some other number of descen-
dants, which then continue to divide ad infinitum. In the standard
Bienaymé-Galton-Watson branching process, the offspring distribu-
tion of every amoeba is fixed and indepdently distributed.

 

Branching Processes

run
f Def of Branching Processes

f Probability generating functions

f The GaltonWatson theorem

These can be described by a genealogical tree, showing which
amoeba in a population are descended from which other. The easiest
notion of time in this case is the number of generations in this ge-
nealogical tree from the single common ancestor. There are also more
sophisticated ”wall-clock” time versions of these processes, which the
population is described a continuous time, and the length of time to
reproduction is random, but in many nice cases, these processes can
be related.

In genealogical time, we can simply record the number of amoebas
that are alive in generation n, in which case the population size of
the Bienaymé-Galton-Watson process becomes a homogeneous-time
Markov chain on the non-negative integers N0.

Definition 42 (Branching Process): Let Zn be a random vari-
able that denotes the size of the population of amoebae. The
Markov chain (Zn)n≥1 with values in N0 is a branching process
if,

Zn+1 =
Zn

∑
j=1

Xn,j

where Xn,j denotes the number of children born to the jth per-
son in the nth generation. The family (Xn,j : n, j ≥ 0) is an
iid family on N0, the distribution of which is called the off-
spring distribution of the branching process. We will assume
that EZ0 < ∞ and that Z0 > 0 almost surely. If not otherwise
specified, we take Z0 = 1.

In this definition, if Zn is empty, we consider the sum to be empty,
and so 0 is an absorbing state.

Extinction and survival

ng
A few quick examples p X H acwfkzo

Offspring distribution No Ya ai't

Zo 6
Observe Z 4
this population 22 3

can never Z 3

grow Zi 9

after 7 Z 7

generations Zi 7

Zz 0 and Z 0

So Zn E O F n Z Fo
So 0 is an absorbing
state the only absorbing

stated
We will let Teo forjust T denote the
time to absorbtion the extinction time

A 2 0 7
0

do 43 d _Yrs NEB 7

2

34

F 2 1 7 7
T 28 F

g

Figure 2: Extinction times and geneo-
logical trees.

The first motivating question is the extinction time question: does the
population go extinct?
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Definition 43 (Extinction Time): The extinction time T0 of a branch-
ing process is the hitting time of Zn to zero, that is, T0 := τ0.

Note that since 0 is absorbing, if 0 is accessible – meaning if the
offspring distribution puts positive probability on 0 offspring – then
the chain is transient. Moreover, it will always be possible that the
population goes extinct in 1 step (although it might be extremely
rare). So in summary, if 0 offspring is possible Pr(T0 < ∞) > 0 (and
conversely, if 0 offspring is impossible, then Pr(T0 < ∞) = 0, unless
Z0 = 0). The real question is if Pr(T0 = ∞) > 0, which is to say does
the population have positive probability of surviving forever.

There is once case where we can quickly answer this question.

Definition 44 (Mean Offspring Size): The mean offspring size µ is
the mean of the offspring distribution, that is, µ := E(X) where
X follows the offspring distribution.

Theorem 37: Additive martingale

Let (Fn : n ≥ 0) be the natural filtration associated to the
process (Zn : n ≥ 0).

1. If µ < 1 then (Zn : n ≥ 0) is a supermartingale.

2. If µ = 1 then (Zn : n ≥ 0) is a martingale,

3. and if µ ∈ (1, ∞), then (Zn : n ≥ 0) is a submartingale.

4. Further, for µ ∈ (0, ∞), Zn/µn is a martingale.

Proof. All of these statements follow from the computation of the
conditional expectation of Zn+1 given Fn. For all these cases,

E(Zn+1 | Fn) =
Zn

∑
j=1

E(Xn+1,j | Fn) =
Zn

∑
j=1

µ = Znµ.

This gives rise to an immediate corollary:

Corollary 8 (Extinction): If µ ≤ 1, then Pr(T0 < ∞) = 1, unless
the offspring distribution puts all its mass on 1.

Proof. By positive supermartingale convergence, Zn
a.s.−−−→

n→∞
Z∞. As the

sequence (Zn : n ≥ 0) is integer valued, it must be that Zn = Z∞ for
all n ≥ n0 for some random n0. This is impossible if Z∞ > 0 and the
offspring distribution puts positive probability on a number besides
1, and so we must have Z∞ = 0.
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So the population always dies out if µ ≥ 1. The case where µ <

1 does have some different phenomenology, however, and so we
distinguish three cases.

Definition 45 (Criticality): A branching process is subcritical if µ <

1, critical if µ = 1, and supercritical if µ ∈ (1, ∞). Moreover, as
Zn/µn is a martingale,

lim
n→∞

E[Zn] = lim
n→∞

µn =


0, if µ < 1

E[Z0], if µ = 1

∞, if µ > 1

Generating Functions

To decide what happens with µ > 1, we need to introduce another
tool, the probability generating function.

Definition 46 (Generating Function): Let X be a discrete random
variable with values in N0. The probability generating function or
pgf of X is,

G(s) = E[sX ] =
∞

∑
k=0

sk · Pr(X = k).

for all |s| ≤ 1, for which values the series converges absolutely

The probability generating function allows probabilistic questions
to be encoded as analytic questions. Probabilities can be extracted
from the generating function by making analytic operations.

Theorem 38: Differentiating the pgf

Probabilities for X can be obtained from the generating func-
tion by successive differentiation. If G(j) is the jth derivative
of G,

G(j)(s) =
∞

∑
k=j

k(k− 1) · · · (k− j + 1)sk−j Pr(X = j).

In particular G(j)(0) = j! · Pr(X = j)

This can be seen by just successively differentiating the power
series term by term.
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Example 35: A few common generating functions

1. Let X ∼ Unif({0, 1, 2}). Then,

G(s) =
1
3
+ s

(
1
3

)
+ s2

(
1
3

)
=

1
3

(
1 + s + s2

)
.

2. Let X ∼ Geom(p). For |s| < 1,

G(s) =
∞

∑
k=1

sk p(1− p)k−1 = sp
∞

∑
k=1

(s(1− p))k−1 =
sp

1− s(1− p)
.

3. Let X ∼ Poisson(µ). For µ > 0,

G(s) =
∞

∑
k=0

e−µµk

k!
· sk = e−µ ·

∞

∑
k=0

(µs)k

k!
= e−µeµs = eµ(s−1).

Theorem 39: Properties of Generating Functions

We mention in passing a few properties of probability gener-
ating functions

1. If X and Y are random varibles on N0 that satisfy,

GX(s) = GY(s) ∀s ∈ (0, 1)

then X law
= Y.

2. If X and Y are independent, then,

GX+Y(s) = GX(s) · GY(s)

Proof. For the first point, a pgf of a random variable has an absolutely
convergence power series expansion in |s| ≤ 1, and so they are equal
to their Taylor series expansions at 0. So if GX(s) = GY(s) for all
s ∈ (0, 1) (and hence in [0, 1]), all their derivatives at 0 are equal,
and so all they have the same Taylor series. But this means they have
same law, as the pgf is the generating function of the probability
vector of a random variable.

For the second point, we compute for any s ∈ (0, 1)

GX+Y(s) = E[sX+Y] = E[sXsY] = E[sX ]E[sY] = GX(s)GY(s).

The main reason we have introduced the pgf is that it is especially
well suited to branching processes, for the following reason:
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Theorem 40: Branching processes and the pgf

The generating function of the nth generation size Zn is the
n-fold composition of the offspring distribution generating
function,

Gn(s) = E[sZn ] = E
(
G ◦ G ◦ · · · ◦ G︸ ︷︷ ︸

n times

(s)Z0
)
.

Proof. The generating function of the nth generation size Zn is,

Gn(s) = E[sZn ] = E

[
sΣ

Zn−1
k=1 Xk

]
= E

[
E

[
s∑

Zn−1
k=1 Xk | Zn−1

]]
where the last inequality is by the Total Law of Expectation.

E

[
s∑

Zn−1
k=1 Xk | Zn−1 = z

]
= E

[
s∑z

k=1 Xk | Zn−1 = z
]

by conditioning

= E

[
s∑z

k=1 Xk

]
by independence

= E

[ z

∏
k=1

sXk

]
=

z

∏
k=1

E[sXk ] by independence

= [G(s)]z for all z.

So we have shown that

E[s∑
Zn−1
k=1 Xk | Zn−1] = [G(s)]Zn−1

Taking expectations,

Gn(s) = E[G(s)Zn−1 ] = Gn−1(G(s))

The result follows by induction on n.

Corollary 9 (Extinction by time n): For any n ∈N,

Pr(T0 ≤ n) = H(G ◦ G ◦ · · · ◦ G︸ ︷︷ ︸
n times

(0))

where H(s) = EsZ0 .

Proof. The generating function for the n-th generation size Zn is,

Gn(s) =
∞

∑
k=0

sk Pr (Zn = k)
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Because 0 is an absorbing state,

Pr(T0 ≤ n) = Pr(Zn = 0) = Gn(0).

Applying Theorem 40

Gn(s) = H(G ◦ G ◦ · · · ◦ G︸ ︷︷ ︸
n times

(s)).

So we can compute the probability of extinction by time n by un-
derstanding the behavior of iterated compositions of the pgf of the
offspring distribution. This motivates the following collection of ana-
lytic facts about pgfs.

Example 36: Poisson PGFs visualized

Example X n Poisson w de 0

then PIX KI ETI o

k

So E s't eteuh.sk
1 0 K

M

eMEI HSI emens
K o k

So for Poissonfue G s eats D

Note that the pgfs dip below the straight line s 7→ s when the
means of the Poisson are strictly greater than 1.

Lemma 20 (Analytic properties of pgfs): The probability gener-
ating function G(s) of a random variable X on N0 is convex
and non-decreasing on [0, 1] with G(1) = 1. Furthermore, it
is strictly increasing, unless Pr(X = 0) = 1, and it is strictly
convex, unless X ≤ 1 almost surely.
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Proof. From the definition, for s ∈ [0, 1].

G(s) =
∞

∑
n=0

sn Pr(X = n).

So G(1) = 1, as Pr(X ∈ N0) = 1. Further G is non-decreasing
and convex as all terms in its Taylor expansion are non-negative. It
is further strictly increasing if Pr(X > 0) > 0 and strictly convex if
Pr(X > 1) > 0.

We can also relate the mean of the distribution to the slope of the
pgf at 1

Lemma 21 (The slope at 1 is the mean): G′(1) = EX.

Proof. G′(1) = ∑∞
k=1 k · Pr(X = k) = E[X].

All these facts have the following consequence.

Lemma 22 (Intersecting the line): If X is a random variable on
N0 and EX > 1, there are exactly two solutions of GX(s) = s
on [0, 1], one at 1 and one at s∗ ∈ [0, 1). Moreover, for s < s∗,
GX(s) > s and for s ∈ (s∗, 1), GX(s) < s.

Proof. If EX > 1, then Pr(X > 1) > 0, and so GX is a strictly convex
increasing function on [0, 1]. It therefore intersects the straight-line
s 7→ s either {0, 1, 2} times. One intersection is at s = 1, and the slope
of G′X is greater than 1, so GX descends below the line s 7→ s from
1. Further GX(0) ≥ 0, and so there must be a second intersection
somewhere on [0, 1). As there cannot be more than 2 intersections,
we conclude the statements in the lemma.

Theorem 41: The root of extinction

Let G(s) be the probability generating function of a random
variable X on N0 with Pr(X > 1) > 0. For any initial distri-
bution with pgf H the smallest positive root of the equation
G(s) = s, s∗ is the probability of eventual extinction, that is,
P(T0 < ∞) = H(s∗).

Proof. The iterates

pk := (G ◦ G ◦ G · · ·G)(0)

are nondecreasing in k, and by definition of s∗, they are always below
s∗ < 1. Hence they have a limit p∞. The iterates satisfy

pk+1 = G(pk),



MATH 547 Lecture notes Lecture Notes | 97

and so by taking limits on both sides and using continuity of G, we
conclude that p∞ = G(p∞). Hence we must have that in fact on
taking k → ∞, p∞ = s∗. From Corollary 9 and continuity of H, we
conclude the proof.

Thus we have proven the Bienaymé–Galton–Watson theorem,
which states that there is a positive probability of surviving forever
when the process is supercritical, while the process goes extinct al-
most surely if the process is critical or subcritical:

Corollary 10 (Galton-Watson): If the branching process is super-
critical, i.e. EX > 1, then Pr(T0 = ∞) > 0.

Example 37: Computing Extinction Probabilities

Consider a branching process with,

Z0 = 1 and ~π =
(

1/6 1/3 1/2
)

where ~π is the offspring distribution. The curves,

y = s and y = G(s) =
1
6
(1 + 2s + 3s2)

intersect at s = 1. In this case the smallest nonnegative solu-
tion of the quadratic equation

0 = 1− 4s + 3s2 = (1− 3s)(1− s)

is the extinction probability, and so the tree goes extinct with
probability 1/3.

Example 38: Computing Extinction Probabilities

Consider a branching process with,

Z0 = 1 and ~π ∼ Po(µ)

where ~π is the offspring distribution. Recall that,

G(s) = eµ(s−1)

Solving s = eµ(s−1) numerically by iteration,

G1(0) G2(0) G3(0) G4(0) G10(0) G15(0)
0.135335 0.177403 0.192975 0.199079 0.203169 0.203187
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Almost sure growth rates, and the Kesten–Stigum theorem

Suppose that we were unsatisfied by simply knowing that a pop-
ulation survived, in the supercritical case µ > 1, and we further-
more wished to know the size of the population. In Theorem 37, we
showed that Mn := Zn/(EZ0µn) is a martingale, which strongly sug-
gests that the correct order of magnitude is µn. Indeed, martingale
convergence implies that Mn has an almost sure, almost surely finite
limit M∞. So we know, in a sense that the growth rate is at most µn

in some sense, and we know it basically for free. We do not know
however, that M∞ > 0. If we let ∆ be the extinction probability of the
supercritical GW tree, then we know for example that there is at least
a probability ∆ that M∞ = 0, on account of the fact that if T0 < ∞,
then we have MT0 = 0, and hence M∞ = 0. But is this the only way
that the GW tree can die out?

This is answered by the Kesten–Stigum theorem:

Theorem 42: Kesten-Stigum

The event {M∞ = 0} has probability ∆ if and only if the off-
spring random variable X satisfies EX log X < ∞ (at x = 0,
we take x log x = 0).

Otherwise said, under this EX log X < ∞ condition, almost surely
either the population dies out in finite time or there is an almost
surely positive random variable W so that Mn = Zn/(EZ0µn)

a.s.−−−→
n→∞

W.
This proof introduces a couple of beautiful ideas (some of which

were introduced in Russell Lyons, Robin Pemantle, and Yuval Peres.
“Conceptual proofs of L log L criteria for mean behavior of branch-
ing processes”. In: The Annals of Probability (1995), pp. 1125–1138).
While the theorem is an if and only if, we show just the sufficiency
condition.

The basic strategy here is to consider a change of measure, much like
the Doob h-transform, in which we look at a new probability measure
Q which biases the probability space by W, i.e.

Q(A) = E(1AW).

If W is 0 on some positive probability event besides the obvious one
(where the population is extinct at a finite time), then that entire
event will be a measure 0 set in Q. Now this idea is only useful if we
can work with this probability measure.

Now it turns out it is possible to give an explicit probabilistic
interpretation to the measures

Qn(A) = E(1A Mn),
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but these will only be related to Q if E(W | Fn) = Mn, 47 in which 47 So we will need to show that (Mn :
n ≥ 0) is uniformly integrable. We will
circle back to this.

case for events A ∈ Fn, we will have by definition of conditional
expectation

Qn(A) = E(1A Mn) = E(1AW) = Q(A).

The idea here is that the brnaching process (Zn : n ≥ 0) will have a
new explicit, Markovian description, at least for 0 ≤ k ≤ n under the
measure Qn. In fact, it will turn out to be time-homogeneous.

To describe this, we need the idea of size-biasing.48 48 Size biasing appears naturally in life.
The most famous tangible example is
waiting for the bus. If the interarrival
distribution between busses is X,
and these have densities and are iid,
then it can be proven that the length
of the interarrival time when YOU
arrive follows the size-bias of the
normal interarrival distribution. In
particular, probability is systematically
disadvantaging you by making the bus
arrival times longer when you arrive.
This is not a joke. For what it’s worth, it
affects everyone equally.

Definition 47 (Size bias): For a law µ on [0, ∞) having finite ex-
pectation EX =

∫
R

xµ(dx) < ∞, the size bias of µ is given by

µs(dx) =
xµ(dx)

EX
,

which is again a law on [0, ∞). For a non-negative real valued
random variable X with EX < ∞, we say that a random vari-
able Xs is a realization of the size-bias of X if its law is the size
bias of the law of X.

It is worth noting that the size bias of a random variable always
puts 0 probability on 0.

Exercise 30 (Size-biased Poisson): Show that X law
= Poisson(µ)

for some µ if and only if Xs law
= 1 + X.

One of the main tools for working with size biasing is the follow-
ing.

Lemma 23 (Size biased sums): Suppose that X = ∑n
j=1 Yj is a

sum of iid non-negative random variables with finite expecta-
tion. Then we can realize the size bias of X by defining

Xs = Ys +
n

∑
j=2

Yj

where Ys follows the size biased distribution of Y1 but is other-
wise independent of (Yj) and I.

Proof. Because the summands are iid, we can also realize the size bias
of X by choosing I = Unif({1, 2, · · · , n}) uniformly at random and
independently of all (Yj), since

Xs law
=

n

∑
j=1

(Yj1j 6=I + Ys1j=I).
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We need to check the distribution of Xs. Let φ be a bounded Borel
function from R→ R. Then

E(φ(Xs) | I) =
∫

φ(
n

∑
j=1

yj)
yI

EY1
µ⊗n(dy).

Hence taking expectation over I,

E(φ(Xs)) =
∫

φ(
n

∑
j=1

yj)
∑n

j=1 yj
nEY1

µ⊗n(dy) = E(φ(X) X
EX ).

Remark 4 (Distribution of I): The idea in the proof allows the
lemma to generalize to the non-iid setting, where the additional
randomization is important. In general, for non-iid (Yj), one
must choose I so that Pr(I = j) is proportional to EYj. With
this choice, the size bias can always be realized by choosing

Xs law
=

n

∑
j=1

(Yj1j 6=I + Ys1j=I).

This leads us to the definition of the size-biased Galton-Watson
tree.

Definition 48 (Size-biased Galton Watson tree): Say that (Zn :
n ≥ 0) is the population alive at generation n in a size-biased
Galton-Watson tree if conditionally on Fn,

Zn+1
law
= Xs +

Zn

∑
j=2

Xj

where (Xj) and Xs are independent of each other and Fn, and
they follow the offspring distribution and size bias of the off-
spring distribution, respectively.

If viewing this is a genealogical tree, then there is a single lineage
within this tree which is special, in that it always follows the size bias
distribution. As the size bias of an integer random variable is always
at least 1 almost surely, this lineage is never ending. One can also
represent this tree as a single distinguished infinite path, the spine, to
which one attaches Galton-Watson trees with offspring distribution
X. This leads to an explicit representation of the size of the branching
process:

Lemma 24 (Spinal representation): Suppose Zs
n follows the dis-

tribution of a size-biased Galton Watson tree with initial pop-
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ulation Z0 and offspring random variable X. Let ((W(k)
n : n ≥

0) : k ≥ 1) be an infinite family of iid Galton Watson trees with
initial distributions given by Xs − 1 and offspring distributions
given by X. Let W(0) be a Galton Watson tree with initial pop-
ulation Z0 − 1. Then for any n ≥ 1

Zn = 1 +
n

∑
k=0

W(k)
n−k

Proof. At step 0, this representation is

Z0 = 1 + W(0)
0 ,

in other words, 1 population is the “chosen 1”, which will be on the
spine, and the rest are not. In step 1, this means

Z1 = 1 + W(0)
1 + W(1)

0 ,

where we have divided the descendants into those not on the spine

in the first generation, (W(0)
1 )

law
= Z0 − 1, all those non-chosen descen-

dants of the chosen 1, W(1)
0

law
= Xs − 1, and the new chosen 1. Proving

the representation holds can be checked by induction.

Lemma 25 (Qn is the size bias): Under Qn the random variable
(Zk : 0 ≤ k ≤ n) has the law of a size-biased Galton-Watson
tree.

Proof. This is similar to the exercise 16 in that we are biasing a mea-
sure by a space-time harmonic function. Without repeating the de-
tails, if P is the tpm of the chain (Zk : 0 ≤ k ≤ n) under Pr, then the
tpm at step k under Qn is given by

Qk(x, y) = P(x, y) h(k+1,y)
h(k,x) ,

where h(k, x) = x/µk. Thus this ratio is

h(k+1,y)
h(k,x) = y

µx ,

which means that Zk+1 conditioned on Fk follows precisely the size-
bias of the conditional law of Zk+1 given Zk. By Lemma 23, this is
exactly the transition probability matrix in the definition of the size
biased Galton Watson tree.

So under Qn we actually have a probabilistic description of the
population size. The main estimate that we need to make is a bound
for Zs

n/µn.
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Lemma 26 (Boundedness of the size bias GW): Suppose that
EX log X < ∞ and EX > 1. Then (Mn : n ≥ 0) is a uniformly
integrable martingale.

This already implies Mn = E(M∞ | Fn), and moreover EM∞ = 1.
Hence, the growth rate Zn/µn is asymptotically nontrivial, which is
to say it is not 0 almost surely.

Proof. We need to show that for every ε > 0 there is an K sufficiently
large that

ε > E(Mn1|Mn |>K) = Qn(Zn/µn > KEZ0).

Now we have already seen that under Qn, the law of Zn has the law
of a size-bias Galton Watson process, i.e.

Qn(Zn/µn > KEZ0) = Pr(Zs
n/µn > KEZ0).

Using the representation in Lemma 24, if we condition on G :=
σ(W(k)

0 : k ≥ 1), we have

E(Zs
n/µn | G) ≤

n

∑
k=0

W(k)
0

µk ≤
∞

∑
k=0

W(k)
0

µk .

To lighten the notation let Yk = W(k)
0 . It suffices to show that this sum

is finite almost surely.
These are now iid random variables, which have the law of the

size biases of X. By assumption EX log X < ∞, which implies
E log Yk < ∞.

Now, for any α > 1,

Pr(Yk > αk) ≤ Pr(log Yk > k log α).

Using that these are iid, for some constant Cα,

∞

∑
k=1

Pr(log Yk > k log α) ≤
∞

∑
k=1

Pr(log Y1 > k log α) ≤ CαE log Y1,

and so by Borel Cantelli, there are at most finitely many k so that
Yk > µk/2. It follows that

∞

∑
k=1

Yk

µk < ∞ a. s.,

which implies the uniform integrability.
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Theorem 43: Half of Kesten-Stigum

If EX log X < ∞, and EX > 1 then {M∞ = 0} has probability
∆ (and so with probability 1, if the tree does not go extinct,
its population grows like M∞µk).

Proof. Suppose that the initial distribution has 1 element almost
surely. By performing a first step analysis, each descendant of the
root must die out almost surely for M∞ = 0. However all of these
have the same probability of dying out. So the probability q that
M∞ = 0 can be seen to satisfy

q = f (q),

where f is the pgf of the offspring distribution. The only roots of this
are ∆ and 1. As we know it is not 1, it must be ∆.
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